
AFIT/GAE/ENY/92D-27

AD-A259 146

A COMPARISON OF COMPUTATIONAL FLUID
DYNAMICS COMPUTER PROGRAMS FOR HYPERSONIC

PROPULSIVE NOZZLE FLOWFIELDS

THESIS

Kennedy B. Wilson Jr., Captain, USAF

"AFIT/GAE/ENY/92D-27 D TIC
ELECTE

JANTI 1993
S E D

93-00078

Approved for public release; distribution unlimited

2A 14



AFIT/GAE/ENY/92D-27

A COMPARISON OF COMPUTATIONAL FLUID DYNAMICS COMPUTER

PROGRAMS FOR HYPERSONIC PROPULSIVE NOZZLE FLOWFIELDS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Aeronautical Engineering

Kennedy B. Wilson Jr., B.S.

Captain, USAF

December 1992

Approved for public release; distribution unlimited



Acknowledgements

I would like to thank my advisor, Captain John Doty,

for his guidance and instruction throughout the preparation

of this thesis. His interest and knowledge in the subject

was inspiring and he was always there. Additionally, I

would like to express thanks to Captain Sandra Snelling

whose advice and instruction on using the SCHNOZ code was

invaluable.

I thank my parents for always supporting me in

everything. I am happy to know that my thesis will sit

side-by-side with my father's gathering dust on an AFIT

library bookshelve in the years to come. I am even more

glad that my mother will be able to read this - of course

she'll find it incredibly boring - for she has taught me

more in my life than I have ever learned elsewhwere. And

most of all, I would like to thank my wonderful wife, and

best friend, Angelica for encouraging me and keeping me sane

during the last few months. Accesion For

NTIS CRA&I

DfIC tAB
U'.atinou iced 0

By.....................
By .................................................

Divt ib tion

Availability Codes

Avail aridlor
Dist Special

iii

DTIC Q•f\L? T: .:z:~'Z2%D B



* Table of Contents

Acknowledgements. . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . v

List of Tables .... . . . . . viii

List of Symbols . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . 1-1
1.1 Background . . . . . . . . . . . 1-1
1.2 Purpose . . . . . . . . . . . . 1-2
1.3 Scope . . . . . . . . . . . 1-3
1.4 Approach . . . . . . . . . . . . 1-5

II. Theory . . . . . . . . . . . . . . 2-1
2.1 Governing Equations . . . . . . . . 2-1
2.2 Thermodynamic Models . . . . . . . . 2-2
2.3 Computational Methodologies . . . .. 2-4

2.3.1 PNS Solvers . . . . . . . . . 2-4
2.3.2 Flux-Difference-Splitting .... 2-6

III. Methodology . . . . . . . . . . . . 3-1
3.1 FDS Code Description. . _ ..... 3-1

3.1.1 Governing Flow Equations .... 3-1
3.1.2 Computational Scheme . . . . . . 3-1
3.1.3 Boundary Conditions . . . . .. 3-3
3.1.4 Decoding the Solution . . . . . 3-4

3.2 PNS Code Description . . . . . . . . 3-5
3.2.1 Governing Flow Equations . . . . 3-5
3.2.2 Computational Scheme . . . . . . 3-6
3.2.3 Boundary Conditions . . . . . . 3-8
3.2.4 Turbulence Model . . . . . . . 3-9
3.2.5 Decoding the Solution . . . . . 3-9

3.3 Oblique Shock Validation. . . . . . . 3-11
3.3.1 Perfect Gas . . . . . . . . . 3-11
3.3.2 Imperfect Gas . . . . . . . . 3-12

3.4 Isolated Hypersonic Nozzle . . . . . . 3-13
3.4.1 Freestream Conditions . . . . . 3-13
3.4.2 Internal Flow Conditions . . . . 3-14
3.4.3 Nozzle Configuration . . . . . . 3-16

IV. Findings. . . . . o . . . . . . . . 4-1
4.1 Case Summary . o . . . . . . . . 4-1
4.2 Grid Refinement . . . . . . . . . 4-2

4.2.1 SCHNOZ . . . . . . . . . . 4-2
4.2.2 FDS Grid Packing . . . . . . . 4-2

4.3 FDS vs SCHNOZ Frozen Flow Comparisons . . 4-4

iii



4.4 Viscous Effects . . . . . . . . . 4-10
4.5 Finite-Rate Chemistry Effects . . . . . 4-11
4.6 FDS Perfect Gas Trends . . . . . . . 4-13

4.6.1 FDS Perfect Gas vs. Imperfect Gas . 4-13
4.6.2 FDS Perfect Gas vs. SCHNOZ

Finite-Rate Chem . . . . . . . 4-14

V.Conclusions/Recommendations . . . . . . . . 5-1
5.1 Conclusions. . . . . . . . . . . 5-1
5.2 Recommendations . . . . . . . . . 5-2

Bibliography . . . . . . . . . . . . . . BIB-i

Appendix A: Governing Equations . . . . . . . A-i

Appendix B: Thermodynamic Models . . . . . . . B-I

Appendix C: Flux-Difference-Splitting . . . . . C-i

Appendix D: FDS Decoding . . . . . . . . . . D-1

Vita . . . . . . . . . . . . . . ..v. V-1

iv



List of Figures

Figure Page

1.1. Typical hypersonic vehicle with airframe-
integrated nozzle . . . . . . . . . . 1-8

1.2. Expanded view of hypersonic nozzle section . . 1-8

2.1. Capabilities of gas dynamic equations . . . 2-9

3.1. Stencil for first-order accurate upwind FDS
method . . . . . . . o . . o . 3-20

3.2. Stencil for first-order accurate upper solid
wall boundary point . . . . o . . . . 3-20

3.3. Geometry for oblique shock wave study . . . 3-21

3.4. Static pressure distribution along the top
wall for shock wave reflection study, FDS
MacCormack methods . . . . . . . . . 3-21

3.5. Static pressure distribution along the top
wall for shock wave reflection study, FDS
and SCHNOZ frozen flow solutions . . . o . 3-22

3.6. Shock-on-lip SCRAMjet operation .... . 3-22

3.7. Parabolic nozzle contour . . . .. ... 3-23

4.1. Static pressure distribution along nozzle wall
for different grid packing, FDS solution,
perfect gas, M=15, 38 deg parabolic nozzle . . 4-20

4.2. Static pressure distribution along nozzle wall
for different grid packing, FDS solution,
frozen flow, M=15, 38 deg parabolic nozzle . . 4-20

4.3. Static pressure contours (atm), FDS frozen flow
solution, M=1O, 20.6 deg parabolic nozzle
contour . . . o . . . . . . . . . 4-21

4.4. Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=10, 20.6 deg parabolic
nozzle contour . . . . . .. . . 4-21

4.5. Static pressure distribution along nozzzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=10, 20.6 deg parabolic nozzle contour . . 4-22

v



4.6. Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=10, 20.6 deg parabolic nozzle contour . 4-22

4.7. Static pressure contours (atm), FDS frozen flow
solution, M=15, 20.6 deg parabolic nozzle
contour . . . . . . . . . . . . . 4-23

4.8. Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=15, 20.6 deg parabolic
nozzle contour . . . . . . . . . . 4-23

4.9. Static pressure distribution along nozzzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=15, 20.6 deg parabolic nozzle contour . . 4-24

4.10. Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=15, 20.6 deg parabolic nozzle contour . 4-24

4.11. Static pressure contours (atm), FDS frozen flow
solution, M=20, 20.6 deg parabolic nozzle
contour . . . . . . . . . . . . . 4-25

4.12. Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=20, 20.6 deg parabolic
nozzle contour . . . . . . . . . . . 4-25

4.13. Static pressure distribution along nozzzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=20, 20.6 deg parabolic nozzle contour . . . 4-26

4.14. Static pressure distribution along nozzzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=10, 38 deg parabolic nozzle contour . . . 4-26

4.15. Static pressure distribution along nozzzle wall,
SCHNOZ viscous and inviscid solutions, frozen
flow, M=10, 38 deg parabolic nozzle contour . . 4-27

4.16. Static temperature distribution along nozzle
wall, SCHNOZ viscous and inviscid solutions,
frozen flow, M=10, 38 deg parabolic nozzle . . 4-27

4.17. Static pressure distribution along nozzzle wall,
SCHNOZ frozen and finite-rate chemistry
viscous solutions, M=10, 38 deg nozzle . . . 4-28

4.18. Static temperature distribution along nozzle
wall, SCHNOZ frozen and finite-rate chemistry
viscous solutions, M=10, 38 deg nozzle . . . 4-28

vi



4.19. Static pressure distribution along nozzzle wall,
FDS perfect and imperfect gas solutions, M=10,
38 deg parabolic nozzle contour . . . . . . 4-29

4.20. Static temperature distribution along nozzle
wall, FDS perfect and imperfect gas solutions,
M=15, 38 deg parabolic nozzle contour . . . . 4-29

4.21. Static pressure distribution along nozzzle wall,
SCHNOZ finite-rate chemistry and FDS perfect
gas solutions, M=10, 20.6 deg nozzle . . . . 4-30

4.22. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=20, 20.6 deg nozzle . 4-30

4.23. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=15, 20.6 deg nozzle . 4-31

4.24. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=20, 20.6 deg nozzle . 4-31

Appendix
Figure Page

A.l. Compressibility correction paramters for kE
turbulence model. . . . o . . . . . . A-6

C.I. General property distribution and Riemann
description . . . . . . . . . o . . C-13

C.2. Riemann problem for planar supersonic flow and
resulting wave pattern . . . . . o . . . C-13

C.3. Flux differences and splitting . . . . . . C-14

vii



List of Tables

Table Page

3.1. Freestream conditions for typical hypersonic

trajectory . . . . . . . . . . . . 3-18

3.2. Nozzle inlet conditions, FDS inputs . . . . 3-18

3.3. Nozzle inlet conditions, SCHNOZ inputs . . . 3-19

3.4. Nozzle geometry specifications . . . . . 3-19

4.1. Comparison of grid packing efficiencies, FDS
perfect gas solutions, M=15, 38 deg nozzle 4-17

4.2. Computational planes and CPU time (seconds)
comparison for the SCHNOZ and FDS inviscid
frozen flow solutions . . . . . . . . 4-17

4.3. CPU time and calculated thrust comparisons of
SCHNOZ viscous vs. inviscid solutions, frozen
flow, 38 deg parabolic nozzle contour . . . 4-17

4.4. CPU time and calculated thrust comparisons of
SCHNOZ finite-rate chemistry vs. frozen flow
solutions, 38 deg parabolic nozzle contour . 4-18

4.5. Combustion products, H2 0, mole fraction at
nozzle inlet and exit for SCHNOZ finite-rate
chemistry solutions . . . . . o . . . 4-18

4.6. CPU time and calculated thrust comparisons of
FDS imperfect gas vs. perfect gas solutions,
20.6 deg parabolic nozzle contour . . . . 4-18

4.7. CPU time (seconds) comparison for the FDS
perfect gas and SCHNOZ finite-rate chemistry
solutions . . . . . . . . .. 4-19

viii



List of Symbols

a speed of sound

af frozen speed of sound

amax local speed of sound at location of maximum
value of turbulent kinetic energy

Ci mass fraction of species i

C1  constant in turbulence equations

C2  constant in turbulence equations

CIA constant in turbulent viscosity relation

cp specific heat at constant pressure

cv specific heat at constant volume

dE difference in E flux vector

dF difference in F flux vector

e specific internal energy;
alternating difference switch in MacCormack
method

E E flux vector

f covected flow property

F F flux vector

h static enthalpy of mixture;
nozzle inlet height

H total enthalpy of mixture

k turbulent kinetic energy

kmax maximum value of turbulent kinetic energy at
each axial location

K(MT) correction factor in turbulent viscosity
relation

I turbulent length scale

ix



m mass of mixture

M Mach number

Mr characteristic Mach number of turbulence

MW molecular weight

Pi pressure in region i

p static pressure

Pc corrected pressure

Pt total pressure

qoo dynamic pressure

R gas constant of mixture

R0 universal gas constant

si entropy in region i

T static temperature

Ti temperature in region i

Tt stagnation temperature

u axial component of velocity

v radial component of velocity

V velocity magnitude

x spatial axial coordinate

y spatial radial coordinate

YL y location of lower computational boundary

YU y location of upper computational boundary

z coefficient for lineraized approximate
Riemann solver

x



Greek Symbols

a Mach angle

ai mass fraction of species i

y specific heat ratio

Yf frozen specific heat ratio

A axial step size in transformed coordinate
system

All radial step size in transformed coordinate
system

turbulence energy dissipation rate;
shock wave angle

7 transformed radial coordinate

Tk partial derivative of transformed radial
coordinate with respect to x

l partial derivative of transformed radial
coordinate with respect to y

6 flow angle

eB attachment angle for nozzle parabolic wall

section

/ sum of laminar and turbulent viscosity

V Prandtl-Meyer angle

9 transformed axial direction coordinate

p density

pe total internal energy

ai flow slope in region i

ak constant in turbulence equations

ae constant in turbulence equations

Oi entropy parameter in region i

xi



00 entropy parameter at some reference

temperature

V general variable for Riemann problem

'Wi net rate of production of species i

xii



Abstract

This study compared the results of two computer

programs, a flux-difference-splitting (FDS) Godunov-based

scheme and the SCRAMjet Hypersonic Nozzle (SCHNOZ)

parabolized Navier-Stokes code using MacCormack's method,

applied to a hypersonic nozzle flowfield. Two different

nozzle geometries were investigated for three different Mach

numbers along a typical hypersonic flight trajectory. A

direct comparison between the SCHNOZ and FDS programs was

made by numerically solving the steady Euler equations using

a frozen flow assumption in the nozzle. Significant areas

of interest in comparison of the code results were the

accuracy in capturing the flow physics and the required

computational time. The frozen flow SCHNOZ program is

currently 6 to 10 times more efficient in terms of

computational time than the FDS frozen flow program. The

SCHNOZ and FDS codes demonstrated comparable accuracy in

capturing the flow physics of the nozzle flowfields

considered. The implementation of the viscous terms in the

SCHNOZ code proved to be ineffectual in modeling the viscous

effects in the flowfield. The finite-rate chemistry effects

were important for the nozzle inlet conditions considered,

as the SCHNOZ finite-rate chemistry model calculated nozzle

wall thrusts up to 4% greater than the frozen flow model.
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A Comparison of Computational Fluid Dynamics Computer

Programs for Hypersonic Propulsive Nozzle Flowfields

I. Introduction

1.1 Background

The National AeroSpace Plane (NASP) and other trans-

atmospheric vehicles have rejuvenated interest in the

hypersonic flight regime. The currently proposed propulsive

system in the hypersonic regime for NASP-type vehicles is

the airframe-integrated Supersonic Combustion RAMjet

(SCRAMjet) cycle. Figure 1.1 shows a typical hypersonic

vehicle with an airframe-integrated SCRAMjet nozzle. The

SCRAMjet nozzle contours are designed to generate sufficient

thrust at different flight conditions given a certain

vehicle size, weight, and fuel onboard. With the airframe-

integrated SCRAMjet, this in turn influences the engine

size, vehicle size, and fuel requirements (13:50). Numerous

iterations are thus required in the optimization of the

vehicle and engine design.

The solution to the hypersonic propulsion design

problem will rely heavily upon computational fluid dynamics
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(CFD). This reliance on CFD has been driven by the

decreasing cost of computers and increasing cost of wind

tunnel tests coupled with a limited hypersonic test facility

capability (9:657). The hypersonic propulsive environment,

with associated high Mach numbers and high temperatures,

requires very accurate CFD simulations (7:99).

Additionally, the iteration and optimization required in the

design process of a hypersonic propulsion system demands an

efficient CFD algorithm.

1.2 Purpose

Propulsive nozzles for hypersonic vehicles represent an

extremely demanding test for CFD codes. The flowfield of a

propulsive nozzle, as shown in Figure 1.2, is a complicated

structure with expansion waves, shock waves, contact

surfaces, and the interaction among all three and surface

boundaries such as the nozzle wall or cowl (6:1). Several

CFD codes have been developed to resolve the propulsive

nozzle flowfield of a hypersonic vehicle. As such, the

results of any one CFD code need to be compared with those

from other computer codes.

Doty (6) developed a flux-difference splitting (FDS)

code using the steady Euler equations and assuming perfect

gas to analyze propulsive nozzle flowfields in an effort to

optimize nozzle contours. Doty's FDS code was later

modified by Schieve (13) to incorporate a calorically
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imperfect gas thermodynamic model. A SCRAMjet Hypersonic

Nozzle (SCHNOZ) parabolized Navier-Stokes (PNS) computer

code was developed by Science Applications International

Corporation (SAIC) for the NASP Program (20). The SCHNOZ

code includes algorithms for both viscous flow effects and

finite-rate chemistry reactions in numerically solving the

PNS equations for the flowfield. The purpose of this study

was to compare results from the modified FDS code to SCHNOZ

code results to determine the most accurate and efficient

code in the analysis of a hypersonic propulsive nozzle

flowfield.

1.3 Scope

This research effort sequentially compared the accuracy

and efficiency of Doty's FDS code with the thermodynamic

model improvement of Schieve (13) to the SCHNOZ PNS code

(20) applied to a hypersonic propulsive nozzle flowfield.

The nozzle contour in the study was a two-dimensional,

maximum thrust, planar nozzle. Included in the study were

nozzle contours determined from Doty's FDS code by Herring

to be the optimum nozzle configuration over a typical

hypersonic flight trajectory (8) and a more severe expansion

nozzle.

The flow in the two-dimensional hypersonic nozzle was

assumed to be steady, compressible, and rotational. The

fluid in the nozzle was treated as a calorically imperfect,
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but thermally perfect, gas where computations of the

properties downstream of any discontinuity employed the

frozen flow model. The frozen flow model does not account

for chemical reactions within the nozzle. This frozen flow

assumption was justified by Snelling's finite rate chemistry

investigations, which showed that the rapid expansion within

the hypersonic nozzle essentially froze the chemical

reactions within the nozzle (15:4-4). However, the static

temperatures in the flows considered by Snelling were only

2000 K for uniform flow profile studies, and the nozzle

inlet profiles considered in this study approached 3000 K.

The finite rate chemistry effects become increasingly more

important as the temperature increases (1:373-375).

Therefore, SCHNOZ code runs were also performed using finite

rate chemistry kinetics in the flowfield. Additionally,

perfect gas runs were made using the efficient upwind code

to demonstrate the ability of the perfect gas model to

capture the trends in the hypersonic nozzle flowfield.

The initial internal flowfield of the nozzle was

generated from a RAMJET Performance Analysis cycle analysis

computer code (11). The internal flowfield cycle analysis

solution required the input of the freestream properties at

each flight condition. The freestream properties used were

determined for a typical hypersonic flight trajectory with a

1000 psf dynamic pressure loading (8).

The analysis of the nozzle CFD code results was made at
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three points along the 1000 psf flight trajectory. Flight

conditions of Mach 10, Mach 15, and Mach 20 were considered.

The desired goal was to determine the most effective and

efficient CFD code for use across the entire flight

trajectory.

Significant areas of interest in comparison of the CFD

code results were the required CPU time, the code accuracy

in capturing the flow physics, and the variation of code

results for different flight conditions and different nozzle

entrance profiles. Additionally, since the SCHNOZ code

proved to be very sensitive to grid spacing (13:4-2) the

efficiency and accuracy of grid clustering techniques were

investigated. The AFIT Computer Lab facilities were used to

conduct the computational analysis and comparison with all

computations being performed using double precision floating

point arithmetic 64-bit SPARCstation 2 machines.

1.4 Approach

Running the SCHNOZ code in the inviscid mode allowed

for a comparison between the FDS Godunov-based scheme and

MacCormack's scheme in the solution of the steady Euler

equations. Prior to the actual nozzle flow analysis, a

determination of the trends exhibited by each code was made

by comparing the results of the FDS Godunov scheme and the

modified MacCormack scheme to a more simple flow situation;

the oblique shock wave. The oblique shock wave has an exact
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analytical solution which may be compared to the results of

the two different schemes. Comparison of the scheme results

to the exact solution indicated the ability of each method

to capture the true physics of the flow.

Because of the inherent non-linearity of the governing

equations and the complicated interactions within the

nozzle, no known analytical solution exists for the

hypersonic nozzle. It was expected that the full viscous,

turbulent, PNS equations modeled in the SCHNOZ program would

provide more accurate information on the propulsive nozzle

flowfield as it accounted for viscous interactions as well

as a turbulence model. For this reason the viscous SCHNOZ

code was used as the basis for accuracy comparisons between

the codes. Investigations of each flight condition were

made operating the SCHNOZ code in both viscous and inviscid

modes. The CPU time required for each code solution was

measured and used to determine the efficiency of the two

codes.

Investigations at each flight trajectory point were

made for an isolated nozzle with no external flow

interactions. This allowed for a clean comparison between

the two codes and the ability of each to resolve the

gradients within the nozzle flowfield. For a combined

(internal with external) flowfield, both computer programs

used non-physical procedures to obtain solutions across the

contact surface downstream of the engine cowl. The FDS
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program obtained a solution by employing two solid surface

boundary conditions and requiring the pressure to match

across the surface (6:193). The SCHNOZ program solution is

obtained by implementing an embedded grid scheme at an

abritrary distance downstream of the cowl, where the grid

spacing is based on the chemical species parameter profile

(4:909). For thrust considerations, the isolated nozzle

flowfield was shown by Snelling to be equivalent to the

combined flowfield for a given cowl geometry (15:4-10).

Therefore, the performance of each code on the isolated

nozzle was a good indicator of the numerically determined

nozzle thrust for each configuration.
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Figure 1.1. Typical hypersonic vehicle with airframe-
integrated nozzle (6:5)

:-"ýVEHICLE.. . •• '•"•• VEHIuI MRFACM

EXIT OF

Figure 1.2. Expanded view of hypersonic nozzle section

(20:2)
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If. Theory

2.1 Governing Equations

The governing equations of fluid dynamics and their

abilities to solve fluid flow phenomena are summarized in

Figure 2.1 (9:659). From the conditions present in the

hypersonic propulsive nozzle flowfield discussed previously,

the Navier-Stokes equations are necessary to fully solve the

flowfield. Full Navier-Stokes equations incorporate the

viscous effects of molecular and turbulent dissipation and

diffusion (9:659). In the hypersonic environment, radial

changes in the viscous terms dominate axial or streamwise

changes (1:344) and an accurate solution to the flowfield

may be obtained by dropping the streamwise derivatives of

viscous terms. The resulting set of equations, with the

elimination of all time derivatives, are termed the

parabolized Navier-Stokes (PNS) equations. Full discussions

of the Navier-Stokes and PNS equations and their numerical

implementation are presented in Anderson, Tannehill, and

Pletcher (2). The PNS equations employed in the SCHNOZ

computer program are presented in Appendix A.

The effects of viscosity and the conduction of heat are

not included in the Euler equations. In the hypersonic

nozzle design, however, the Euler equations are a valuable

tool as the determination of nozzle thrust is dominated by

the inviscid pressure effects. With increasing velocities
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and the favorable pressure gradient in the expansion of the

nozzle, the viscous boundary layer growth is limited, thus

having a lessening effect on the overall flow phenomena

(2:235-236). The increasing velocity resulting from the

nozzle expansion also acts to diminish the free shear layer

interactions within the nozzle flow. The Euler equations are

capable of capturing the relevant flow phenomena and

discontinuities within the hypersonic propulsive nozzle

flowfield.

2.2 Thermodynamic Models

The thermodynamic model employed greatly influences the

flow properties downstream of discontinuities within the

hypersonic nozzle. The simplest model is the perfect gas.

A perfect gas model assumes no intermolecular forces and

constant specific heats, cv and cp, resulting in a constant

specific heat ratio, y. The perfect gas obeys the thermal

equation of state (1:381):

p = pRT (2.1)

The perfect gas assumption breaks down when high

temperatures are encountered within the nozzle flowfield.

In real gases, 7 is not a constant, but is dependent on the

temperature of the flowfield. A calorically imperfect, but

thermally perfect gas model allows for the temperature

dependence of the flow by considering the internal structure
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of the gas. The calorically imperfect gas assumes that the

thermal equation of state, Eq. (2.1), still holds, but

accounts for a non-constant y resulting from increased modes

of energy available to the gas molecule; see Appendix B.

The calorically imperfect gas assumption is coupled with a

frozen flow model which assumes that the molecular

composition of the gas remains unchanged throughout the

flowfield. The complex chemical mixtures which exit the

SCRAMjet combustor can be treated as a mixture of thermally

perfect gases. The resulting flowfield properties such as

enthalpy and specific internal energy are no longer simple

functions of the temperature, but rather are dependent on

the chemical composition of the mixture and the functional

dependence on temperature of each species contained within

the mixture.

In real gases, the flow properties are a function of

not only temperature, but pressure and time as well (7:99).

The nonequilibrium chemically reacting gas thermodynamic

model accounts for the chemical reactions within the

flowfield. The nonequilibrium chemically reacting gas

allows for a changing molecular composition based on finite-

rate chemistry kinetics. As discussed in Appendix B, a

finite-rate chemistry kinetics package is coupled with the

governing equations of the flow and determines the chemical

composition and resulting flow properties based on the

reaction rates for a given set of species and chemical
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reactions. The nonequilibrium chemically reacting gas is a

more complete model of the flow physics, but also more

complex to incorporate in a solution procedure.

2.3 Computational Methodologies

2.3.1 PNS Solvers

PNS equation solvers are in widespread use in the

analysis of the hypersonic flow regime (1:360). The

popularity of the PNS solvers is attributable to the

efficiency in predicting the hypersonic flowfield with a

great savings in computational storage and time in

comparison to a full Navier-Stokes solution (2:420).

Unfortunately, to obtain an accurate solution requires a

greater amount of user interaction and adjustment of various

input parameters (1:348-349). The parabolization of the

Navier-Stokes equations allows for an explicit downstream

marching finite-difference solution technique.

A Scramjet Hypersonic Nozzle (SCHNOZ) parabolized

Navier-Stokes computer code was developed by Science

Applications International Corporation (SAIC) for the NASP

Program (20). The SCHNOZ Code is the nozzle analysis

component of an integrated system of two-dimensional PNS

codes for analyzing SCRAMjet propulsive nozzle flowfields

(20:7). SCHNOZ unifies previous work in rocket propulsive

nozzles and the extension of the PNS equations to supersonic

mixing problems and finite rate chemistry (20:4).
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SCHNOZ uses the MacCormack method to explicitly solve

the PNS equations in conservative form (20:4). The

MacCormack predictor-corrector method determines the

downstream flux values based on the average of a predicted

and then corrected downstream flux derivative (2:482-485).

To dampen oscillations inherent in the MacCormack scheme in

the presence of strong discontinuities, a self-adjusting

hybrid scheme developed by Harten and Zwas is added to

modify the MacCormack scheme (20:24).

To account for chemically reacting flow in the nozzle,

SCHNOZ employs a finite-rate chemical kinetics package

developed by AeroChem (20:20-21). Additionally, the SCHNOZ

code contains two high Reynolds Number turbulence models to

handle the turbulent nature of the nozzle inlet flow exiting

from the combustor (20:9).

The PNS equations are hyperbolic in nature, thus

requiring supersonic flow for a valid, well-posed problem

(2:24). The addition of the viscosity effects causes a

small subsonic region at the viscous boundary layer

interaction region (1:204). This subsonic region is

mathematically elliptic and the downstream marching

technique of MacCormack's method is invalid in this region

(1:204). The SCHNOZ code removes this subsonic portion of

the boundary layer and enforces a slip boundary condition,

resolving the flow at the wall based on a viscous-

characteristic formulation related to the pressure and flow
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angle at the boundary (20:13-14).

Snelling (15) used the SCHNOZ code to examine the

effects of non-uniform nozzle entrance profiles on pitching

moments. Snelling investigated several inlet nozzle profiles

on an isolated and combined internal flow/external flow

nozzle. In that study Snelling showed that the chemical

kinetics considerations are unnecessary extra computational

time, producing nearly identical results to the frozen flow

model (15:5-1). Snelling also found that the addition of

the external flow interaction had little effect on the

overall nozzle thrust (15:4-11).

2.3.2 Flux-Difference-Splitting

The solution of discontinuities in the nozzle flowfield

is representative of the Riemann problem. The Riemann

problem describes the collapse of flowfield discontinuities

to a local point of consideration (6:2,11-17). These

discontinuities give rise to fluxes that are not present in

the initial value line. The differences between these

fluxes and the initial values of the flowfield are split

along the characteristic waves developed by the local

collapse of the discontinuity (6:2). This technique is

known as the flux-difference-splitting (FDS) method. Full

details on the FDS method and the solution of the Riemann

problem using a Godunov scheme are given in reference (6)

and summarized in Appendix C.
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The MacCormack scheme applied to the Riemann problem

and FDS was analyzed by Steger and Warming (17) for the

solution of time dependent flow in a shock tube. Similarly,

Roe (12) used a density ratio across the discontinuities to

influence the fluxes considered in the Riemann problem to

solve the unsteady Euler equations. Grossman (7) modified

the upwind FDS schemes developed by Van Leer, Steger and

Warming, and Roe to incorporate a real-gas equivalent ratio

of specific heats based on equilibrium chemical reactions in

high temperature flow. Sod (17) provides an excellent

survey of the different solution schemes applied to the

Riemann problem for the unsteady Euler equations.

Chakravarthy (3) provides a comprehensive comparison of

upwind schemes based on the FDS method for unsteady

flowfields that are integrated in time to the steady state.

However, the determination of the nozzle thrust for a

propulsive vehicle requires only the steady-state solution

of the flowfield (6:2). The use of the time-dependent

schemes mentioned above are not very efficient when advanced

to the steady state. It is more efficient to directly solve

the steady form of the Euler equations. Pandolfi (10),

using a Godunov scheme, applied the unsteady FDS method to

the solution of steady supersonic flows.

Doty (6) employed an upwind FDS method based on the

Godunov scheme to solve the Riemann problem. Doty's work

showed that the shock capturing ability of the first-order
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accurate upwind FDS method provided solutions comparable in

accuracy to a higher-order MacCormack method, but with a

tremendous savings in computational time (6:75).

Herring (8) demonstrated the utility of the upwind FDS

code developed by Doty in an optimization study of nozzle

contours for a typical hypersonic flight trajectory assuming

a calorically perfect gas in the nozzle. Schieve (13)

modified Doty's code to use a calorically imperfect

(thermally perfect) gas model and showed a difference in

nozzle thrust of over 16% compared to the perfect gas model.
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Figure 2.1. Capabilites of gas dynamics equations (9:659).
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III. Methodology

3.1 FDS Code Description

3.1.1 Governing Flow Equations

The FDS code of Doty (6) solves the following

divergence vector form of the Euler equations:

az + aL = (3.1)

Tx -ay

where the E and F flux vectors are given by

1U PV
B = 2" = p Pv (3.2)

u (pe+p) v (pe+p)

The vector components represent the continuity, x momentum,

y momentum, and energy equations, respectively. The

governing vector equation is independent of the

thermodynamic models considered in the FDS study and is

applicable to both perfect and calorically imperfect gas

flows.

3.1.2 Computational Scheme

The governing equations are transformed from physical

space to the computational space assuming the following

transformation:

SX (3.3)
'= q (x, y)

The governing equation, Eq. (3.1), is transformed in
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computational space as:

(z) _ _ ) _ (7) (3.4)

Detailed information on the coordinate transformation is

presented in reference (6:142-143).

The transformed governing equations are numerically

solved in computational space using a first-order accurate

FDS method. The FDS method developed by Doty is based on

the Godunov initial-value Riemann problem. The Riemann

problem and the first-order accurate upwind FDS method are

described in detail in Appendix C. Essentially, the Riemann

problem is used to resolve discontinuities in the flowfield

into numerical fluxes. The resulting Riemann fluxes are

propagated along characteristics determined by the local

wave angle (6:9).

To axially march the solution from station i to i+l in

Figure 3.1, the Godunov-based FDS method resolves the

Riemann fluxes and then computes flux differences based on

the initial value flux at axial location i. These flux

differences are then split based on their direction of

propagation such that the resulting flux difference is sent

in the physically correct direction.

The stencil for the first-order accurate FDS method is

presented in Figure 3.1. Note in Figure 3.1 that the

Riemann fluxes are resolved at the grid midpoints, j+1/2 and

j-1/2. The first-order accurate upwind FDS scheme uses
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positively biased information from node j-1/2 and negatively

biased information from node j+1/2 to advance the solution

from node (i,j) to (i+l,j) (13:17). The first-order

accurate FDS finite-difference approximation to the

transformed governing equation, Eq. (3.4), for an interior

grid point is given by (6:15):

jr -E A9(dE.+Ci- + dE.-1/ - A4TnyCLWF1/ + drj.1/ (3.5)

It should be noted that the FDS finite-difference equation,

Eq. (3.5), is independent of the Riemann problem solution

procedure and the thermodynamic model.

3.1.3 Boundary Conditions

The interior grid point solution, Eq. (3.5), is not

valid at boundaries, as it would require information outside

the physical domain. As shown in Figure 3.2, there can be

no negatively biased information from a node j+1/2

influencing the solution because of the solid wall upper

boundary. The solution procedure for the FDS solid wall

boundary is a two step wave-corrector requiring the velocity

vector to be tangent to the solid boundary (6:190). A

contact surface boundary point , such as would exist for the

interaction between the internal nozzle flow and external

freestream, essentially uses a coupled solid wall boundary

condition. An iterative solution procedure is necessary to

3-3



match the pressure and flow angle for the contact contact

surface (6:193). Details on the first-order accurate FDS

boundary point calculations are presented in reference

(6:189-194).

3.1.4 Decoding the Solution

Once the solution has been marched downstream to the

next axial location, i+1, the primitive flow variables must

be extracted from the newly determined E and F flux vectors

so that the Riemann problem may be solved. This allows the

solution to continually march downstream in the axial

direction. The extraction of the primitive varaibles from

the E and F flux vector solutions is referred to as decoding

the solution. The decode procedure differs depending on the

thermodynamic model employed in the calculation. The

perfect gas decode procedure is a closed form solution

procedure based on the flux vector components and the

conservation of stagnation enthalpy. The calorically

imperfect gas decode procedure is an iterative process based

on temperature that must incorporate the imperfect gas model

into the conservation of stagnation enthalpy. Differences

in the decode procedure for the two different thermodynamic

models are presented in Appendix D.
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3.2 PNS Code Description

3.2.1 Governing Flow Equations

The SCHNOZ code solves the following conservative form

of the PNS equations:

ax + - +G, a+ (3.6)
7jxi ay of 0 ay)

where the flux vectors are

0
P3U 1 -PV 0 0

p+pu 2  puv 0 u
B Pull p v =y PrV G _

=l pUVl 7•+pv2 1 a= ar-.- aju2)1 f= v (3.7)
pua1 j pv 1  Y 2

The vector components of Eq. (3.7) represent the continuity,

x momentum, y momentum, energy equation, and species

continuity equations, respectively. The governing vector

equation is not independent of the thermodynamic models

considered in the SCHNOZ study. The species continuity

equation is necessary for finite-rate chemistry

considerations. For perfect or calorically imperfect gas

frozen flow studies, the species continuity equation is not

implemented. Additionally, for inviscid flow calculations

of a perfect or calorically imperfect frozen gas, the

viscous terms are dropped and the PNS equations reduce to

the Euler equations.

The governing equations are transformed from physical

space into rectangular computational coordinates, E and t,
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through the following transformation:

1: [ (Y - YL(X)] / [yu(X) - YL(x)] (3.8)

where Yu and YL represent the upper and lower physical

boundaries respectively (20:21).

3.2.2 Computational Scheme

The transformed governing equations are numerically

solved in the computational domain using the explicit two-

step MacCormack algorithm. The MacCormack algorithm

spatially marches the solution from an initial data line, i,

downstream to a new axial location, i+1. The first step of

the MacCormack method calculates a downstream predicted

value of the E flux vector, denoted by E" , using the

upstream values of the E, F, G, and f flux quantities

(1:197). The second step of the MacCormack method then

uses the predicted flux values, ', F%, G, and f*, to correct

the downstream flux quantities (1:198). The SCHNOZ program

employs the following second-order-accurate, central-

difference predictor and corrector formulas at an interior

grid point, (i,j), to advance the solution from an axial

location i to i+1 (15:3-2):
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Predictor Step:

S= - A• { (1-e) F.. - (1-2e)Fj - eF1j_ - GjAtI

+ A b t{Af+1 _ - A- (fj - f:-) (
All 2

Corrector Step:

= [EJ + 9j- A• fe*eFj÷. + (1-2e)r7 + (e-l)rj_ 1 }
All(3.1)

-a*t+ Atb 2 [A (*+ -~)-A-(j(.0

Anl2

where

A* + *

and for f = u, v, H, and ai

au = =v = 1 FR= (3.12)

The e term in Eqs. (3.9) and (3.10) is an alternating switch

(e = 0 at even steps; e =1 at odd steps) used to provide

nonbiased convective differencing (20:23).

The basic MacCormack scheme has been shown to overshoot

and undershoot flow properties downstream of flowfield

discontinuities (20:23, 2:146-147, and 6:24,31). The

oscillation of flow properties about a discontinuity is
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remedied using the self adjusting hybrid scheme of Harten

and Zwas (20:23). The Harten and Zwas hybrid scheme adds a

dissipative term to the conservative flow equations of the

MacCormack scheme based on the pressure at surrounding grid

points (20:23). From a corrected value of the flux variable

E, the addition of a viscous term to the MacCormack

solution is implemented to yield the self-adjusting hybrid

value, E, using the following finite-difference

representation (20:23):

i+1 1 8  'E (3.13)

E1=E 1  + -IOJ12E12 - 'Jj-1/21&j-1/2)

The 0 terms are dimensionless parameters varying from 0 to

1, based upon the pressure at the surrounding grid points to

provide appropriate levels of damping to the solution

(20:23).

3.2.3 Boundary Conditions

The SCHNOZ program uses the forward or backward

MacCormack algorithm with an Abbett correction procedure to

handle solid wall boundary conditions (20:31). The Abbett

correction procedure enforces the surface flow tangency

condition at the wall. A corrected pressure, Po' is

determined at the wall by considering the wall to be

composed of a series of infinitesimal simple expansion or

compression waves for a small change in surface slope, AO.
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The corrected pressure is found from (15:3-3):

P = p - -- Ae (3.14)

where p and M in Eq. (3.14) are the values at the boundary

determined using the MacCormack algorithm. The corrected

pressure is then used to correct the density and the axial

and radial velocity components are determined from the

actual slope of the wall. More details are given by Wolf et

al. (20:33-34).

3.2.4 Turbulence Model

The SCHNOZ program contains two variants of

turbulence modelling equations, the ke and kW high Reynolds

number versions. The turbulence model used in this study is

the common two-equation ke eddy viscosity model which models

the turbulent kinetic energy, k, and energy dissipation, e,

detailed in Appendix A. The ke model was chosen because the

kW model has had difficulties in applications to wall

bounded shear flows such as those in a nozzle (5:507).

Additionally, the implementation of the ke model in the

SCHNOZ code is determined by a correlation to experimental

jet mixing results (5:507).

3.2.5 Decoding the Solution

Unlike the FDS algorithm, the primitive variables are

not a computational necessity at every axial location in the
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downstream marching of the SCHNOZ program. Advances from

one axial position to the next using the MacCormack method

are based only on the flux vectors. The extraction of

primitive variables from the flux vectors (decoding the

solution) is nec .ssary however, to determine the artificial

damping of the Harten and Zwas hybrid scheme, which is

dependent on the pressure at surrounding nodes. The decode

procedure is also used to obtain the primitive variables at

desired axial locations. The SCHNOZ program uses a

different decode procedure based on the thermodynamic model

employed. For the perfect gas model, a simple closed form

decode procedure is employed based on the flux vector

components. For the thermally perfect frozen flow and the

finite-rate chemistry thermodynamic models, a different real

gas decode procedure is employed depending on whether the

flow is supersonic, M>I, or hypersonic, M>5.

For supersonic flows, an iterative procedure is

employed that uses an assumed pressure value, p', to

calculate the flow velocity. The total enthalpy and

velocity are then used to calculate the enthalpy, h':

Hl -HI (u 2 + v 2 ) (3.15)

2

Calculating the species mole fractions, aj, and the

temperature, T', from the assumed value of p', the enthalpy

is also calculated using the species formulation:
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h = YCjh1 (T') (3.16)

The assumed pressure, p', is iterated upon until the

calculated enthalpy values of h' and h" match to a

prescribed tolerance (20:30).

The iteration procedure described above breaks down for

the expanding hypersonic nozzle flow where the kinetic flow

energy, H, is orders of magnitude greater than the thermal

contribution, h (20:31). SCHNOZ uses an iterative decode

procedure for hypersonic flow conditions that is based on a

linear relation between the axial velocity component and

temperature (20:75).

3.3 Oblique Shock Validation

3.3.1 Perfect Gas

A demanding test of the two numerical methods is the

oblique shock reflection which contains large

discontinuities in the flowfield properties downstream of

the shock wave. The geometry of this flow situation is

shown in Figure 3.3. Doty, using a perfect gas assumption,

compared the second-order centered MacCormack algorithm to

the first-order upwind Godunov based FDS algorithm using a

10 degree ramp shock wave geometry with a Mach 2.2 incoming

flow (6:31). Figure 3.4 shows the static pressure

distribution along the top wall obtained with the two

different methods compared to the exact analytical solution.
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Doty found that the second-order accurate MacCormack method

did no better than the first-order accurate Godunov based

FDS method in capturing the location of the shock (6:24).

Additionally, the MacCormack method overshot the exact

solution before reaching the correct pressure rise, while

the FDS method monotonically approached the correct pressure

(6:24).

The MacCormack method implemented by Doty did not

incorporate the Harten and Zwas hybrid scheme to remedy the

oscillations downstream of the discontinuity. Sod showed

that the addition of the artificial viscosity of the Harten

and Zwas hybrid scheme smoothed out the MacCormack method in

the area of discontinuities while retaining second-order

accuracy in the smooth portions of the flow (16:24). The

oblique shock reflection geometry verified the ability of

the first-order Godunov-based FDS scheme to capture the

physics of a strong flowfield discontinuity. This provided

the initiative to implement the FDS method in the analysis

of the hypersonic propulsive nozzle flowfield.

3.3.2 Imperfect Gas

The MacCormack method as implemented in the SCHNOZ

computer program incorporates the Harten and Zwas hybrid

damping scheme. A comparison between the imperfect gas FDS

method and the SCHNOZ frozen flow inviscid solution was made

on the 10 deg oblique shock geometry using the same Mach 2.2
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inlet conditions as Doty used to compare the perfect gas FDS

and MacCormack methods. To allow for a comparison to an

exact analytical solution, the imperfect gas was assumed to

be Argon-free air in the standard mole fraction ratios of

0.79 N2 and 0.21 02. The analytical solution was determined

using an imperfect gas oblique shock wave solver provided by

Schieve (13:91-95).

Figure 3.5 shows the static pressure distribution along

the upper wall obtained with the two different methods

compared to the exact analytical solution. The FDS

imperfect gas method and the SCHNOZ frozen flow solution

equally capture the the location of the shock and the static

pressure downstream of the flowfield discontinuity.

Additionally, with the Harten and Zwas damping scheme the

second-order MacCormack method no longer overshoots the

exact solution and monotonically approaches the correct

pressure as does the first-order accurate Godunov-based

scheme.

3.4 Isolated Hypersonic Nozzle

3.4.1 Freestream Conditions

The freestream conditions used in this study are those for a

typical hypersonic flight trajectory with a constant dynamic

pressure, q., of 1000 psf. Freestream properties were

determined at Mach numbers of 10, 15, and 20 along this

trajectory. Assuming the freestream conditions obey perfect
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gas relations, the freestream static pressure is found from

the definition of Mach number and the constant dynamic

pressure:

2q;
P =.q- (3.17)

The flight trajectory altitude, z, is interpolated from the

1962 Standard Atmosphere Table assuming p = p(z). The

remaining freestream properties are calculated using the

1962 atmosphere. The freestream conditions used in this

study are tabulated in Table 3.1.

3.4.2 Internal Flow Conditions

The initial conditions for the isolated nozzle

investigations were generated from a RAMJET Performance

Analysis (RJPA) cycle analysis code (10). The RJPA code

simulated a Supersonic Combustion RAMJET (SCRAMjet) engine

operating at each flight condition along the hypersonic

trajectory. The SCRAMjet was assumed to operate in a shock-

on-lip condition with the maximum capture of airflow without

spillage (19:3). The shock-on-lip condition is illustrated

in Figure 3.6 where the bow shock wave emanating from the

forebody compression rests on the engine inlet.

The capture area of the SCRAMjet inlet is driven by

airframe geometries and the resulting shock structure

upstream of the inlet (19:3). For this study, an effective
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bow shock of 8 degrees was used to simulate a 2 degree angle

of attack and 6 degree forebody compression on the underside

of the hypersonic vehicle. The SCRAMjet inlet and capture

areas are then determined at each flight condition for the 8

degree compression.

The RJPA program was run simulating an air-breathing,

hydrogen-fueled, SCRAMjet engine cycle using a 14 species

gas mixture with some frozen H2 carried through a constant

area combustion process to simulate combustion inefficiency.

The RJPA program calculates the following flow properties at

several stations in the SCRAMjet engine: T, p, p, V, 7f, af,

Mf; the f subscript denotes frozen flow values. The RJPA

program also calculates the molecular weight (MW) of the

mixture and the mole and mass fractions of each species in

the mixture at specified engine stations. The combustor

exit properties calculated by the RJPA program provide the

initial conditions for the internal nozzle studies.

The FDS code requires an input value of the gas

constant, R, which was determined using the universal gas

constant, RP, and the MW.

R -R° (3.18)
MW

This value of R is used as the initial condition for both

perfect and imperfect gas frozen flow analyses and finite-

rate chemistry flows. The MW and R values remain constant

for the perfect gas and frozen flow models as the molecular
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composition remains fixed. The finite-rate chemistry flow

allows for chemical reactions and hence a change in MW and

the gas constant, R. The ratio of specific heats, 7f,

determined from the RJPA analysis is used as an initial

condition of the internal nozzle for all flows considered.

The differences between the perfect gas, calorically

imperfect frozen gas, and finite-rate chemistry assumptions

do not effect the initial conditions, but become apparent in

the downstream expansion of the flow in the nozzle; see

Appendix B. The nozzle inlet parameters for the FDS code

are tabulated in Table 3.2 for each flight condition on the

hypersonic flight trajectory.

The internal nozzle inlet conditions for the SCHNOZ

code are presented in Table 3.3 for the same flight

trajectory points. The SCHNOZ code using the perfect gas

assumption requires not only R, but the MW of the mixture.

In essence, the mixture of gases in the nozzle is treated as

a perfect gas with a MW equivalent to the MW of the 14

species gas mixture calculated by the RJPA program.

3.4.3 Nozzle Configuration

As shown in Figure 3.7 (6:46), the hypersonic nozzle

wall consists of two sections. The first section, A-B, is a

circular arc of radius r, followed by a parabolic section,

B-C, with an attachment angle, 0.. For the isolated nozzles

used in this study the lower boundary, or cowl wall, E-F, is
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a straight wall section.

The parabolic nozzle contour used for this study is the

optimal nozzle contour for the entire hypersonic flight

trajectory determined from the FDS perfect gas analysis

performed by Herring (9). This analysis arrived at a

parabolic nozzle contour with an attachment angle of 20.6

degrees. Additionally, a much higher circular arc attachment

angle, eB = 38 deg, is considered to examine the ability of

each code to compute a flowfield with a shock wave (6:49).

The nozzle geometries, x/h and y/h, are characteristic of

geometries considered for hypersonic propulsive nozzles

(6:3). The nozzle geometry parameters for the two nozzles

are listed in Table 3.4.

The nozzle geometry utilized in the SCHNOZ code is

flipped upside relative to the FDS nozzle geometry, however

the pertinent specifications remain the same. The x and y

coordinates for each wall location are determined from the

FDS analysis parabolic contour generator and are used to

generate the nozzle wall input to the SCHNOZ code. The

SCHNOZ wall contour is then calculated from the x and y

coordinates using a cubic spline interpolation routine. The

cubic spline interpolation can lead to small differences

between the two codes in the x and y coordinates and nozzle

wall angles at each wall location.
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Table 3.1. Freestream conditions for typical hypersonic
flight trajectory

Free stream parameter M. = 10 M. = 15 M. = 20

altitude, (km) 33.791 39.581 43.934

static pressure, p (N/m 2 ) 684.0 304.0 171.0

static temperature, T (K) 233.2 249.2 261.2

density, p (kg/m3) 0.01022 0.00425 0.00228

velocity, V (m/s) 3061.4 4746.9 6479.9

specific heat ratio, 7 1.4 1.4 1.4

gas constant, R (J/kg/K) 287.06 287.06 287.06

Table 3.2. Nozzle inlet conditions, FDS inputs

Internal Flow Parameter M. = 10 M. = 15 MH. = 20

Mach number 2.0582 3.4736 4.6791

static pressure, p (N/m 2 ) 373,566 199,752 133,921

static temperature, T (K) 2986.1 3062.9 3176.3

specific heat ratio, 7 1.25219 1.25966 1.27186

gas constant, R (J/kg/K) 355.9 365.7 381.2

Species Mass Fraction for Frozen Flow

N2  0.726652 0.724947 0.722695

02 0.023287 0.029532 0.035884

Ar 0.012877 0.012877 0.012877

H 0.000701 0.001445 0.002840

OH 0.022336 0.030736 0.040664

H2  0.005085 0.006512 0.008066

NO 0.015743 0.018386 0.024192

H20 0.188322 0.164449 0.132859

0 0.004994 0.010106 0.019907
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Table 3.3. Nozzle inlet conditions, SCHNOZ inputs

Internal Flow Parameter Ms.= 10 M.= 15 M.= 20

Mach number 2.0582 3.4736 4.6791

static pressure, p (atm) 3.6867 1.9714 1.3217

static temperature, T (K) 2986.1 3062.9 3176.3

axial velocity, u (ft/s) 7789.1 13,537 19,052

radial velocity, v (ft/s) 0.0 0.0 0.0

Gas Mixture Parameters for Perfect Gas Flow

molecular weight, MW 23.3635 22.7327 21.8060

specific heat ratio, 7 1.25219 1.25966 -1.27186

Species Mole Fraction for Frozen and Finite-Rate Flow

H 0.016243 0.032577 0.061418

H2  0.058920 0.073441 0.087213

H20 0.244184 0.207456 0.160752

N2  0.613426 0.595442 0.569337

O 0.007291 0.014355 0.027121

OH 0.030678 0.041072 0.052118

02 0.017000 0.014681 0.024445

NO 0.012253 0.020976 0.017572

Table 3.4. Nozzle geometry specifications

Circular arc attachment angle, 0. (deg) 20.6 38.0

Inlet height, h (inches) 1.0 1.0

Nozzle circular arc radius, r (inches) 1.0 1.0

Nozzle wall end, x/h 100.0 100.0

Nozzle wall end, y/h ±25.0 ±25.0

Nozzle wall end angle, 0E (deg) ±10.01 ±8.04
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Figure 3.1. Stencil for first-order accurate upwind FDS
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Figure 3.3. Geometry for oblique shock wave study (6:30).
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Figure 3.4. Static pressure distribution along the top wall
for shock wave reflection study, FDS and
MacCormack methods (6:31).

3-21



-- Exact

FDS
0 SCHNOZ

p•

P
S4-
E,

0!

0 , , , I I I II I

1.0 1.5 2.0
X (inches)

Figure 3.5. Static pressure distribution along the top wall
for shock wave reflection study, FDS and
SCHNOZ frozen flow solutions.

Figure 3.6. Shock-on-lip SCRAMjet operation (19:27).
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IV. Findings

4.1 Case Summary

Comparisons of the FDS and SCHNOZ codes were made

using several different combinations of nozzle geometries,

flight conditions, and thermodynamic models. Direct

comparisons of the FDS and SCHNOZ codes were made using an

inviscid frozen flow assumption for two different parabolic

nozzle contours, 20.6 deg and 38 deg, at three different

flight conditions, Mach = 10, 15, and 20, along a typical

hypersonic trajectory. An investigation of the SCHNOZ

implementation of viscosity terms was made by comparing

inviscid and viscous code results for the same nozzle

geometries and flight conditions. Comparisons of the frozen

flow and finite-rate chemistry models in the SCHNOZ code

were also made for the same combinations of nozzle

geometries and flight conditions. The nozzle geometries and

flight conditions were also used to compare perfect gas and

frozen flow FDS results. The comparisons are presented in

plots of static pressure and temperature distributions along

the nozzle wall, pressure contour plots, and tables of CPU

time.
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4.2 Grid Refinement

4.2.1 SCHNOZ

The SCHNOZ code proved to be very sensitive to grid

fineness in resolving the changing flowfield properties

along the nozzle wall (15:4-2). With a coarse grid, 51

points in the radial direction, the MacCormack algorithm was

unable to keep track of the rapidly changing flow properties

along the nozzle wall (15:4-2). A finer grid, 101 radial

points, was required to fully resolve the complex nozzle

flowfield. The SCHNOZ program utilizes equally spaced

radial grid intervals, Ay. The allowable axial marching

step, Ax, is limited by a combination of the Courant-

Friedrichs-Lewy (CFL) hyperbolic stability criterion and the

parabolic diffusion criterion for viscous flows (20:32).

4.2.2 FDS Grid Packing

Grid packing techniques are available in the FDS code

that can cluster gridlines toward the nozzle wall by

reducing the radial interval, Ay. The grid clustering is

dependent on the packing factor, which gives the fractional

position of a packed grid point (6:147). Figure 4.1 plots

the static pressure distribution along the nozzle wall for

the FDS perfect gas solution using a grid packing value of

1.10 and also for no grid packing. Figure 4.2 plots the

static pressure distribution along the nozzle wall for the

frozen flow FDS solution and the two different grid packing
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factors. Figures 4.1 and 4.2 show that grid clustering is

necessary to resolve the flowfield properties along the

nozzle wall without oscillatory behavior using the FDS code.

Computations were made with 101 radial grid points for both

the perfect gas and frozen flow thermodynamic models on the

38 deg parabolic nozzle contour at the Mach 15 flight

condition. The packing factors were used to cluster the

gridlines near the lower and upper walls to capture the

rapidly changing properties along these boundaries.

Table 4.1 presents a comparison of the number of

computational planes and CPU seconds required as a result of

different grid packing factors. The CPU seconds are for

computations using double precision floating point

arithmetic 64-bit SPARCstation 2 machines. Because of the

decrease in the radial interval, the grid packing causes a

corresponding decrease in the axial step size, Ax, to meet

the CFL stability criterion. No significant change in the

wall property distributions were seen with the increased

grid packing for a packing factor of 1.05, but a significant

increase in CPU time was required. Attempts to use 51

radial grid points and grid packing factors were

unsuccessful as the FDS code failed to compute a non-

oscillatory solution for these grids. The grid packing

factor of 1.10 provided a non-oscillatory solution with the

least inefficiency in terms of CPU time and was used

throughout the remainder of the study.
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4.3 FDS vs SCHNOZ Frozen Flow Comparisons

Figures 4.3 through 4.14 present a comparison between

the FDS and SCHNOZ inviscid, frozen flow solutions to the

steady Euler equations. The comparison between the two

solutions is presented in contour plots of static pressure

throughout the nozzle, and property distributions along the

nozzle wall. The contour plots and property distribution

plots illustrate the particular characteristics of the

propulsive nozzle flowfield and demonstrate the ability of

each computer program to capture the flow physics in the

hypersonic nozzle.

The static pressure contour plot for the FDS imperfect

gas solution with the 20.6 deg nozzle attachment angle is

illustrated in Figure 4.3 for the Mach 10 flight condition.

The static pressure contour plot for the SCHNOZ inviscid,

frozen flow solution for the same flight condition and

nozzle geometry is illustrated in Figure 4.4. Figures 4.3

and 4.4 show a good agreement between the two solution

methods for the general characterization of the nozzle

flowfield. Immediately downstream of the combustor exit the

flow undergoes a rapid expansion about the nozzle attachment

radius (item 1). The initial expansion is reflected off the

lower boundary and continually influences the flow

downstream in the nozzle. As the rate of change of the

slope of the nozzle wall decreases, a recompression is

generated in the flowfield (item 2). This recompression is
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reflected off the lower boundary and impinges on the nozzle

wall (item 3). The reflected compression is then carried

throughout the nozzle (item 4).

The calculated pressure distribution along the nozzle

wall for both the FDS and SCHNOZ frozen flow solutions is

presented in Figure 4.5 for the Mach 10 flight condition and

the 20.6 deg nozzle attachment angle. The rapidly expanding

flow around the nozzle attachment radius causes a sharp

initial decrease in pressure. The pressure rise downstream

at an X/h of between 5 and 10 results from the recompression

of the flow due to the change in wall curvature after the

parabolic wall attachment point. The drop in pressure

downstream of the recompression occurs due to the expanding

nozzle geometry and the reflection of the initial expansion.

The increase in presssure further downstream at X/h=50 is a

result of the reflected recompression wave as illustrated in

Figures 4.3 and 4.4. The expansion and pressure drop

gradually proceeds downstream of this slight recompression.

The temperature distribution along the nozzle wall for

the FDS and SCHNOZ frozen flow solutions for the Mach 10

flight condition and 20.6 deg nozzle geometry is illustrated

in Figure 4.6. The temperature distribution along the

nozzle wall essentially follows that of the pressure

distribution. The temperature decreases in regions of

expansion, and increases across the recompressions.

Figures 4.5 and 4.6 show that there is a slight
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difference in the pressure and temperature distributions

along the nozzle wall for the two different code solutions.

The recompression pressure peak is slightly larger in

magnitude and located slightly further downstream for the

SCHNOZ solutions. The pressure and temperature rise at the

reflected recompression, X/h=50, are more pronounced for the

SCHNOZ solution than the FDS solution. The difference

between the two results may be attributable to the

additional axial steps required in the FDS solution. Table

4.2 presents a comparison of the number of computational

planes and CPU seconds required for the two solutions. For

the Mach 10 flight condition and the 20.6 deg nozzle

attachmnet angle, the FDS solution requires almost 3 times

as many computational steps (1461) as the SCHNOZ solution

(562). The increased number of computational steps results

from the grid packing utilized in the FDS solution and the

CFL stability criterion requirements. The increased number

of computational steps adds artificial damping to the

flowfield solution, thus diminishing the pressure and

temperature rise at the compression peaks. Despite these

slight differences in the pressure and temperature peaks,

there is a good overall agreement between the two code

results.

The static pressure contour plot for the FDS imperfect

gas solution with the 20.6 deg nozzle attachment angle is

illustrated in Figure 4.7 for the Mach 15 flight condition.
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Figure 4.8 presents the same information for the SCHNOZ

frozen flow solution. Figures 4.7 and 4.8 show a good

agreement between the two solution methods. The rapid

expansion about the nozzle attachment circular radius occurs

immediately downstream of the nozzle inlet (item 1). The

change in nozzle curvature causes a recompression (item 2)

which reflects off of the lower boundary (item 3) and is

carried downstream (item 4). The bending of the

recompression wave between items 2 and 3 is due to the

interactions between the recompression wave and the initial

nozzle expansion reflecting off the lower solid boundary.

Unlike Figures 4.3 and 4.4, the recompression in Figures 4.7

and 4.8 does not reflect off the nozzle wall. Due to the

increased velocity in the nozzle for the Mach 15 flight

condition, the recompression is carried downstream without

reflecting on the nozzle wall.

Figures 4.9 and 4.10 show the pressure and temperature

distributions, respectively, along the nozzle wall for the

FDS and SCHNOZ frozen flow solutions for the 20.6 deg nozzle

attachment angle at the Mach 15 flight condition. Figure

4.9 shows that the initial expansion is much more rapid for

the Mach 15 flight condition than the Mach 10 flight

condition shown in Figure 4.5. This occurs because of the

increased velocity of the Mach 15 combustor exit results.

The FDS frozen flow solution calculates a lower pressure and

temperature rise at the recompression. Again, the FDS
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solution is artificially dampened by the additional

computational steps. Table 4.2 shows that the FDS solution,

with the grid packing, uses over twice as many computational

steps as the SCHNOZ solution. Aside from the slight

differences at the recompression, the FDS and SCHNOZ

property distributions at the nozzle wall are nearly

identical for the Mach 15 flight condition and 20.6 deg

nozzle geometry.

The static pressure contour plot for the FDS imperfect

gas solution with the 20.6 deg nozzle attachment angle is

illustrated in Figure 4.11 for the Mach 20 flight condition.

The static pressure contour plot for the SCHNOZ, inviscid

frozen flow solution for the same flight condition and

nozzle geometry is illustrated in Figure 4.12. Figures 4.11

and 4.12 show a good agreement between the two solution

methods for the general characterization of the nozzle

flowfield. The initial nozzle expansion (item 1) is more

severe for the Mach 20 flight condition because of the

greater nozzle inlet velocity. The recompression due the

change in nozzle curvature (item 2) is quickly carried

downstream and coalesces into a shock wave within the nozzle

(item 3).

The calculated pressure distribution along the nozzle

wall for both the FDS and SCHNOZ frozen flow solutions is

presented in Figure 4.13 for the Mach 20 flight condition

and the 20.6 deg nozzle attachment angle. Figure 4.13 shows
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that the expansion is more rapid for the Mach 20 flight

condition than for the Mach 15 flight condition (Figure

4.9). The rapid expansion is enhanced by the increased

nozzle inlet velocity for the Mach 20 flight condition. The

FDS frozen flow solution calculates a slightly lower

pressure rise from the recompression than the SCHNOZ

solution due to the artificial damping induced by the FDS

grid packing.

The calculated pressure distribution along the nozzle

wall for both the FDS and SCHNOZ frozen flow solutions is

presented in Figure 4.14 for the Mach 10 flight condition

and the 38 deg nozzle attachment angle. Comparing Figure

4.14 to Figure 4.5, the pressure distribution plot for the

20.6 deg nozzle geometry, shows that the 38 deg attachment

angle causes a more rapid and severe expansion about the

nozzle attachment radius. The initial expansion about the

38 deg attachment radius achieves a pressure of

approximately one-third of that for the expansion about the

20.6 deg attachment radius. The increased attachmnet angle

allows for a greater nozzle expansion. Figure 4.14 shows

nearly a 10% difference in the FDS and SCHNOZ calculated

magnitudes of the recompression pressure rise. Table 4.2

shows that the FDS solution, with grid packing, uses over

twice as many computational steps as the SCHNOZ solution.

The artificial damping from the additional computational

steps is more pronounced for the 38 deg attachment angle
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nozzle, as compared to the 20.6 deg nozzle geometry, because

the recompression wave is stronger due to a greater change

in nozzle curvature downstream of the nozzle attachment

point.

Figures 4.3 through 4.14 show a generally good

agreement between the FDS and SCHNOZ frozen flow solutions

in capturing the physics of the hypersonic propulsive nozzle

flowfield. The maximum differnece in the pressure

distribution along the nozzle wall is approximately 10%,

occurring at the Mach 10 flight condition for the 38 deg

nozzle attachment angle. The greatest difference between

the two solutions, however, is in the required computational

time. Table 4.2 shows that the FDS imperfect gas method

requires CPU times between 6.4 and 9.9 times greater than

the SCHNOZ frozen flow solution.

4.4 Viscous Effects

The implementation of the viscosity terms in the SCHNOZ

code proved to be ineffective in truly capturing any viscous

effects. Figures 4.15 and 4.16 show the static pressure and

temperature distributions, respectively, along the nozzle

wall for the viscous and inviscid calculations of the 38 deg

parabolic nozzle contour at the Mach 10 flight condition.

There is no discernable difference between the property

distributions for the inviscid and viscous flow

calculations. This same pattern was seen in all other

nozzle geometries and flight conditions.
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Table 4.3 shows the difference in the CPU time and the

calculated nozzle thrust for the inviscid and viscous SCHNOZ

results. The differences in calculated nozzle wall thrusts

between the viscous and inviscid SCHNOZ solutions are less

than 0.1% for all flight conditions and geometries.

Compared to the inviscid solution, the viscous solution

required a factoral increase of up to 1.25 times the

computational time. Essentially, the implementation of the

viscous terms in the SCHNOZ code provided no additional

information to the flowfield solution at the expense of

additional CPU time. The ineffectiveness of the SCHNOZ code

to model the viscous effects is attributable to the slip

flow boundary condition employed to remove the subsonic

portion of the boundary layer.

4.5 Finite-Rate Chemistry Effects

Frozen and finite-rate thermodynamic models were

considered at each flight condition to study the effect of

chemistry on the calculated nozzle flowfield for both the

20.6 deg and 38 nozzle contours. Figures 4.17 and 4.18 show

the pressure and temperature distributions, respectively,

along the nozzle wall for the 38 deg parabolic nozzle

contour for the Mach 10 flight condition. Figure 4.17 shows

that there is a slight difference in the pressure

distribution, as the frozen flow calculates a smaller

pressure rise downstream of the initial expansion compared
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to the finite-rate chemistry results. The difference in the

pressure distribution results in a difference in the

calculated nozzle thrust. Table 4.4 shows the increase in

CPU time and the percent change in the calculated thrust for

the finite-rate chemistry runs compared to the frozen flow

results. The calculated nozzle wall thrust is greater for

the finite-rate chemistry SCHNOZ solutions than the frozen

flow solution. The increase in the calculated nozzle wall

thrust is due to the increase in the pressure distribution

along the nozzle wall for the finite-rate chemistry

solutions. The percent change in nozzle thrust is a maximum

of 4% at the Mach 20 flight condition and is independent of

the two nozzle geometries considered. The solution of the

viscous PNS equations including finite-rate chemistry

effects, required CPU run times approximately 2.5 times

greater than the inviscid SCHNOZ frozen flow computations.

The difference in the temperature distribution is more

pronounced than the difference in pressure distribution

between the two thermodynamic models. Figure 4.18 shows the

increased temperature distribution along the nozzle wall of

the finite-rate chemistry solution compared to the frozen

flow solution for the Mach 10 flight condition and the 38

degree parabolic nozzle contour. The finite-rate chemistry

model allows for dissociation and chemical reactions

throughout the nozzle flowfield. As shown in Table 4.5, the

mole fraction of the combustion products, H2 0, increases

4-12



from the nozzle inlet to exit. The increase in H2 0

indicates that the combustion process is continuing as the

flow expands through the nozzle. The combustion process

releases energy into the flowfield. This additional energy

results in a higher temperature for the finite-rate

chemistry solution than the frozen flow solution.

4.6 FDS Perfect Gas Trends

4.6.1 FDS Perfect Gas vs. Imperfect Gas

Figures 4.19 and 4.20 present the static pressure and

temperature distributions, respectively, along the nozzle

wall for the FDS imperfect and perfect gas solutions to the

38 deg parabolic nozzle contour at the Mach 10 flight

condition. The perfect gas calculates both a higher

pressure and temperature distribution along the nozzle wall.

The calculation of the pressure using the linearized-

approximate FDS method was virtually the same for both gas

models considered, see Appendix C. However, there is a

greater difference in the calculation of temperature because

of the variation of the ratio of specific heats, y, allowed

in the imperfect gas model. The variation of y with

temperature for the imperfect gas and the increased modes of

molecular energy allow the imperfect gas to more equally

distribute the energy conversion across the recompression

wave. The perfect gas absorbs a greater percentage of the

energy change into the translational mode of energy, thus
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resulting in an increase in temperature.

The addition of the imperfect gas model to the FDS

algorithm causes a significant increase in computational

time. Table 4.6 shows the increase in CPU time and the

percent change in the calculated thrust for the imperfect

gas FDS results compared to the perfect gas FDS results.

CPU run times were up to 20 times greater for the imperfect

gas model than the perfect gas FDS. The added run time is

caused by the additional iterations required in the solution

of the Riemann problem downstream of a discontinuity and the

decoding of the Riemann flux vector components.

4.6.2 FDS Perfect Gas vs. SCHNOZ Finite-Rate Chem

It is interesting to note that the FDS perfect gas

assumption results more closely follow the finite-rate

chemistry results of the SCHNOZ code than do frozen flow

results. Figures 4.17 and 4.18 show that the SCHNOZ finite-

rate chemistry model solution calculates slightly higher

pressure and temperature distributions than the SCHNOZ

frozen flow solution. The higher pressure and temperature

distributions occur because of the added energy to the flow

from the combustion process continuing throughout the

nozzle. Similarly, Figures 4.19 and 4.20 show that the

perfect gas FDS solution calculates higher pressure and

temperature distributions than the imperfect gas FDS. The

higher pressure and temperature distributions occur because
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of the increase in the energy absorbed by the translational

mode of energy downstream of the flowfield discontinuities.

An adhoc comparison of the FDS perfect gas solutions

and SCHNOZ finite-rate chemistry model solutions is

presented in Figures 4.21 through 4.24. Figure 4.21

illustrates the pressure distribution along the nozzle wall

for the SCHNOZ finite-rate chemistry model solution and the

FDS perfect gas solution for the 20.6 deg nozzle geometry at

the Mach 10 flight condition. Figure 4.21 shows a good

agreement between the two calculated pressure distributions

along the nozzle wall. Figure 4.22 shows the temperature

distribution along the nozzle wall for the same flight

condition and geometry. Except for the differences at the

recompression peaks, the FDS perfect gas temperature

distribution is offset by a constant amount from the

temperature distribution determined from the SCHNOZ finite-

rate chemistry model.

Figure 4.23 shows a relatively constant offset in the

FDS perfect gas temperature distribution and the SCHNOZ

finite-rate chemistry results for the Mach 15 flight

condition and the 20.6 deg nozzle geometry. This same

constant offset is evident in the two calculated temperature

distributions for the 20.6 deg nozzle geometry at the Mach

20 flight condition illustrated in Figure 24. The

artificial damping because of the grid packing used in the

FDS perfect gas solution contributes to difference in the
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temperature distributions at the recompression peaks for

Figures 4.22 through 4.24.

Table 4.7 presents the CPU time comparison for the FDS

perfect gas and SCHNOZ finite-rate chemistry solutions. The

perfect gas FDS algorithm runs 6 to 8 times faster than the

SCHNOZ finite-rate chemistry runs. The constant offset in

the temperature distributions in Figures 4.22-4.24 indicates

that a slight change in the y value used for the FDS perfect

gas solution could yield a more accurate temperature

distribution. The choice of a perfect gas y that is

representative of the actual flow physics would allow the

perfect gas FDS solution to provide valuable information on

the flow phenomena trends exhibited in the nozzle with a

tremendous savings in computational time.
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Table 4.1. Comparison of grid packing efficiencies, FDS
perfect gas solutions, M=15, 38 deg nozzle.

Packing fraction Axial Steps CPU time (sec)

None 387 34.1

1.10 806 74.2

1.05 1291 119.6

Table 4.2. Computational planes and CPU time (seconds)
comparison for the SCHNOZ and FDS inviscid
frozen flow solutions.

Flight condition Axial Axial CPU CPU
Steps Steps Time Time

FDS SCHNOZ FDS SCHNOZ

M=10, 20.6 nozzle 1461 562 2214.8 224.8

M=15, 20.6 nozzle 934 443 1767.1 187.2

M=20, 20.6 nozzle 691 403 1111.6 173.2

M=10, 38 nozzle 1258 561 2105.2 224.3

M=15, 38 nozzle 788 480 1467.1 200.4

Table 4.3. CPU time and calculated thrust comparisons of
SCHNOZ viscous vs. inviscid solutions, frozen
flow, 38 deg parabolic nozzle contour.

Flight condition factoral increase percent change in
in CPU time vs. nozzle thrust vs.

inviscid solution inviscid solution

Mach 10 1.14 0.00

Mach 15 1.18 0.08

Mach 20 1.25 0.02
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Table 4.4. CPU time and calculated thrust comparisons of
SCHNOZ finite-rate chemistry vs. frozen
solutions, 38 deg parabolic nozzle contour.

Flight condition factoral increase percent increase
in CPU time vs. in nozzle thrust

frozen flow vs. frozen flow

Mach 10 2.65 3.89

Mach 15 2.47 3.33

Mach 20 2.49 4.06

Table 4.5. Combustion products, H2 0, mole fraction at
nozzle inlet and exit for SCHNOZ finite-rate
chemistry solutions.

Flight condition inlet H2 0 mole exit H2 0 mole

fractions fractions

M=10, 20.6 nozzle 0.2442 0.2808

M=15, 20.6 nozzle 0.2075 0.2436

M=20, 20.6 nozzle 0.1608 0.1982

Table 4.6. CPU time and calculated thrust comparisons of
FDS imperfect gas vs. perfect gas solutions,
20.6 deg parabolic nozzle contour.

Flight condition factoral increase percent change in
in CPU time vs. nozzle thrust vs.

perfect gas perfect gas

Mach 10 15.79 -6.70

Mach 15 19.94 -1.40

Mach 20 17.53 -1.40
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Table 4.7. CPU time (seconds) comparison for the FDS
perfect gas and SCHNOZ finite-rate chemistry
solutions.

Flight condition FDS SCHNOZ factoral
perfect finite increase

gas rate chem in time
vs. FDS

M=10, 20.6 nozzle 140.2 702.4 5.01

M=15, 20.6 nozzle 88.6 553.2 6.24

M=20, 20.6 nozzle 63.4 496.8 7.84

M=10, 38 nozzle 121.6 679.0 5.58

M=15, 38 nozzle 75.1 583.7 7.77
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Figure 4.1. Static pressure distribution along nozzle wall
for different grid packing, FDS solution, M=15,
perfect gas, 38 deg parabolic nozzle.
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Figure 4.2. Static pressure distribution along nozzle wall
for different grid packing, FDS solution, M=15,
frozen flow, 38 deg parabolic nozzle.

4-20



4

Figure 4.3. Static pressure contours (atm), FDS frozen flow
solution, M=10, 20.6 deg parabolic nozzle
contour.

4

Figure 4.4. Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=10, 20.6 deg parabolic
nozzle contour.
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Figure 4.5. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=l0, 20.6 deg parabolic nozzle contour.
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Figure 4.6. Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=10, 20.6 deg parabolic nozzle contour.
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Figure 4.7. Static pressure contours (atm), FDS frozen flow
solution, M=15, 20.6 deg parabolic nozzle
contour.

4

Figure 4.8. Static pressure contours (atm), SCHNOZ inviscid
frozen flow solution, M=15, 20.6 deg parabolic
nozzle contour.
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Figure 4.9. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=15, 20.6 deg parabolic nozzle contour.
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Figure 4.10. Static temperature distribution along nozzle
wall, FDS and SCHNOZ inviscid solutions, frozen
flow, M=15, 20.6 deg parabolic nozzle contour.
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Figure 4.11. Static pressure contours (atm), FDS frozen
flow solution, M=20, 20.6 deg parabolic nozzle
contour.

23

Figure 4.12. Static pressure contours (atm), SCHNOZ
inviscid frozen flow solution, M=20, 20.6 deg
parabolic nozzle contour.
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Figure 4.13. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=20, 20.6 deg parabolic nozzle contour.
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Figure 4.14. Static pressure distribution along nozzle wall,
FDS and SCHNOZ inviscid solutions, frozen flow,
M=10, 38 deg parabolic nozzle contour.
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Figure 4.15. Static pressure distribution along nozzle
wall, SCHNOZ viscous and inviscid solutions,
frozen flow, M=10, 38 deg parabolic nozzle.
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Figure 4.16. Static temperature distribution along nozzle
wall, SCHNOZ viscous and inviscid solutions,
frozen flow, M=10, 38 deg parabolic nozzle.
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Figure 4.17. Static pressure distribution along nozzle
wall, SCHNOZ frozen and finite rate chemistry
viscous solutions, M=10, 38 deg nozzle.
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Figure 4.18. Static temperature distribution along nozzle
wall, SCHNOZ frozen and finite rate chemistry
viscous solutions, M=10, 38 deg nozzle.
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Figure 4.19. Static pressure distribution along nozzle
wall, FDS perfect and imperfect gas solutions,
M=10, 38 deg parabolic nozzle contour.
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Figure 4.20. Static temperature distribution along nozzle
wall, FDS perfect and imperfect gas solutions,
M=15, 38 deg parabolic nozzle contour.
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Figure 4.21. Static pressure distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=10, 20.6 deg nozzle.
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Figure 4.22. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=10, 20.6 deg nozzle.
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Figure 4.23. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=15, 20.6 deg nozzle.
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Figure 4.24. Static temperature distribution along nozzle
wall, SCHNOZ finite-rate chemistry and FDS
perfect gas solutions, M=20, 20.6 deg nozzle.
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V. Conclusions/Recommendations

5.1 Conclusions

The overall comparison of the two computational

methodologies revealed that currently the SCHNOZ code is

more efficient than the FDS frozen flow code for analyzing a

given nozzle inlet profile and geometry. The SCHNOZ and FDS

code demonstrate a good agreement in modeling the flow

physics in the hypersonic nozzle. The inclusion of

viscosity, turbulence, and finite rate chemistry models

should make the SCHNOZ code more accurate. However, the

implementation of the solid wall slip boundary condition to

remove the subsonic portion of the viscous boundary layer

fails to truly model the effects of viscosity in the nozzle

flowfield. The chemistry effects in the nozzle flowfield

have a small (less than 5%) effect on the overall nozzle

thrust. However, even these small thrust differences are

significant in the optimized design of a NASP-type vehicle

and the inclusion of finite rate chemistry effects should be

incorporated into the computational solution.

The FDS code utilizing the perfect gas assumption is

useful and efficient in optimizing a nozzle or cowl geometry

for a given inlet condition. The perfect gas FDS results

show the proper trends in flow phenomena and flowfield

properties, and provide a good ballpark design to analyze by

a more accurate method. The added CPU time of the more
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accurate FDS frozen flow, compared to the perfect gas, is

attributable to the additional iterations required in the

solution of the Riemann problem and the flux vector decode.

This added CPU time greatly reduces the efficiency of the

FDS method. An improved iteration scheme for the frozen gas

thermodynamic model for the FDS could should markedly

improve its performance in terms of CPU time.

5.2 Recommendations

According to the SCHNOZ operator's manual (20), a new

version of the SCHNOZ code was to be developed that includes

a viscous sublayer model and an option for equilibrium

chemistry. Future computations of the nozzle flowfield

should be run with this version of the SCHNOZ code or a

different PNS code that includes the viscous sublayer model

to better capture the viscous flow effects. With proper

consideration of the viscous effects on the solution, a

study to determine whether the PNS equations are necessary

to model the flow physics would prove beneficial.

Continual improvements in computational methodologies

and computational capabilities need to be investigated and

analyzed to meet the demanding challenges of the hypersonic

propulsive nozzle environment. The current version of the

SCHNOZ program is not optimized for use on a supercomputer,

and the FDS code is not vectorizable because of the nature

of the solution to the Riemann problem. Future studies
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should be made into the efficiency, in terms of

computational time and cost, for a vectorizable PNS code run

on a supercomputer.

The true accuracy of the computer codes can only be

determined by a comparison to exact solutions. In lieu of

unlikely actual flight test data, an unclassified

experimental analysis of a simple nozzle geometry should be

undertaken to validate the findings and trends of

computational runs. Also, computational runs using actual

combustor exit data would prove to be of merit in comparison

to previously assumed or derived nozzle inlet profiles.
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Appendix A: Governing Equations

A.1 Parabolized Navier-Stokes (PNS) Equations

The set of PNS equations implemented in the SCHNOZ code

were derived from the full Navier-Stokes equations using

time-averaging of density, pressure, and viscous stresses

and mass-averaging of the remaining variables (15:2-1).

Using Reynold's averaging and ignoring unsteady terms and

streamwise derivatives of viscous stress terms, the

turbulent Navier-Stokes equations were parabolized (4:907).

Ignoring turbulent stress terms in the normal momentum

equation and diffusion terms in the energy equation, because

of an assumed unity Lewis number (4:907), the resulting

planar PNS equations are obtained:

Continuity:

oa(pu) + a(pv) =0 (A.1)
ax ay

X-Momentum:

a(p + pu 2 ) + a(puv) _ (A.u2
ax ay (A.2)

Y-Momen turn:

a(puv) + a(p+pv 2) _ v(A3)
ax ay r.3ay)
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Total Enthalpy:

a(pwf) + a(pvH) _ 0 (Pr-1) U2 (A .4
ax ay y ' a PrTy)

Full details on the derivation of these equations are

available in the work of Sisilian (14) and their application

to the SCHNOZ code is presented by Dash (20).

For chemically reacting viscous flows a finite-rate

chemistry model is used, and an additional equation is added

to the PNS equation set to account for the various species

continuity:

(P + aj(pva) -+ aa(j a 'j (A.5)
a ayayj 3y)

where the subscript i represents the individual species

considered.

A.2 Turbulence Model

Due to computer limitations and the small space scales

of turbulent motion, the effects of turbulent disspation and

diffusion are only computationally feasible using turbulence

models (9:659). The SCHNOZ program contains two turbulence

models, the ke and kW high Reynolds number versions. The

turbulence model used in this study is the common two-

equation ke eddy viscosity version which models the

turbulent kinetic energy, k, and energy dissipation, c. The

turbulent viscosity, 1,, is determined from:
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= 1k2
pt = clpk 2= CP-k (A.6)

where the length scale parameter used is the turbulence

energy dissipation rate, e (5:507). The energy dissipation

rate is related to k and the turbulent length scale, 1,

through the following relation (15:10):

k 3/ 2  (A7)

The parabolized form of the turbulence modelling equations

are developed from the full Navier-Stokes equations for the

production, transport, and dissipation of k and e with the

omission of all axial derivatives (5:507). For planar flow

the turbulence equations are then given by:

a(p uk) +a4(p vk) .4(i ±t_) + [_2u)2 PC(A8

and

ax U)+ + -2- + VE y - C2 Pe (A.9)

The constants used in the parabolized turbulence modelling

equations are (15:10):

C, = 1.43 a, = 1.0

C2 = 1.92 G, = 1.3

C; = 0.09

The ke model is developed from incompressible
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assumptions and overestimates mixing rates for high Mach

number flows, such as those in a hypersonic nozzle (5:507).

Therefore, a compressibility correction, K(Mj), is employed

in the SCHNOZ code to arrive at a corrected value of the

turbulent viscosity given by:

gt := K(NT) Cp k(A.1O0)

where N, is the characteristic Mach number of the turbulence

(5:507). This characteristic Mach number of the turbulence

is found from:

M (A.11)
a..x

where k.. is the maximum value of k at each axial location

and a . is the local speed of sound at each k, (5:507).

The values of K(M) are determined from comparison with

experimental data and are shown in Figure A.1 (5:507).

A.3 Euler Equations

The Euler equations are the zero viscosity and zero

conductivity limits of the Navier-Stokes equations (9:659).

The effects of viscosity and the conduction of heat are not

included in the Euler equations. The Euler equations as

utilized in the FDS computer program of Doty are:
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Continuity:

a(pu) . a(PV) = 0 (A.12)
ax ay

X-Momentum:

a(p+pU 2 ) + a(pvu) = 0 (A.13)
ax ay

Y-Momen tum:

a(puv) + a(p+pv 2) 0 (A.14)

ax ay

Total Energy:

a[u(pe+p)] + a[v(pe+p)] = 0 (A.15)
ax ay

Traditionally, solutions of the Euler equations require

significantly less computational time than comparable PNS

equation solutions (2:236).
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Figure A.1. Compressibility correction factor for kE
turbulence model (20:11)
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Appendix B: Thermodynamic Model

B.1 Perfect Gas

The thermodynamic model employed greatly influences the

determination of flow properties within the hypersonic

nozzle. The complexity of the thermodynamic models depend

on the degree to which the model actually captures the true

physics of the flow (13:51). The simplest model is the

perfect gas. A calorically perfect gas model assumes no

intermolecular forces and constant specific heats, c, and Cp,

resulting in a constant specific heat ratio, 7. The perfect

gas obeys the thermal equation of state (1:381):

p = pRT (B.1)

where R is the gas constant determined by the molecular

weight, MW, of the gas and the universal gas constant, RP,,:

R = R iv (B.2)

MW

A perfect gas assumes no change in the molecular composition

of the gas. Hence, R remains constant since there is no

mechanism to change the MW of the gas. The enthalpy and

internal energy of a calorically perfect gas are functions

only of temperature (1:388).
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h = h(T) = cpT (B.3)

0 = 0(T) = cT (B.4)

The total internal energy for a calorically perfect gas is

given by:

pe- p (U + v 2 ) (B.5)

The calorically perfect gas assumption is the most

widely used assumption in flow analyses. However, the

calorically perfect gas assumption breaks down when high

temperatures are encountered within the flowfield. The

perfect gas does not account for the internal structure of

the molecule, nor does it allow for the dissociation of

gaseous molecules with increasing temperature. These

shortcomings are adressed by the calorically imperfect gas

model and the finite-rate chemistry model, respectively.

B.2 Calorically Imperfect Gas

The next step in complexity is the calorically

imperfect gas. The calorically imperfect gas still assumes

that intermolecular forces are negligible and obeys the

thermal equation of state, Eq. (B.1). The basic difference

between the calorically imperfect gas and perfect gas is in

the recognition of the proper internal structure of the

gaseous molecule and the modes of internal energy which may

be excited. The differences in the two assumptions is
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illustrated by considering air as a diatomic gas and

ignoring the relatively small contributions of the

electronic mode of energy (18:136).

In general the specific internal energy, now denoted by

e and not 0, for a gas is additive and represented by

(18:128):

etota1 =etras + inrejern (B.6)

where eim represents the internal modes of energy

available. For a diatomic gas such as air, the

translational, rotational, and vibrational modes of energy

are available, even at relatively moderate temperatures

(18:222). Using a statistical mechanics derivation Vincenti

and Kruger provide the following expressions for the

translational, rotational, and vibrational internal modes of

energy for a diatomic gas (18:133-135):

trans 1RT (B.7)

erot = RT (B.8)

"evO (B.39)
e0v/T - 1

where ev is the characteristic temperature for vibration.

The perfect gas assumption allows only for the translational

and rotational internal modes of energy. The specific

internal energy for a perfect gas is then given by:
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e.... = e,&" + eroe = !RT (B.1O)

2

The calorically imperfect gas, accounting for the internal

energy mode of vibration is:

+..T eO eb T + evib (B.11)

Comparing Eqs. (B.10) and (B.11) shows that the energy of

gaseous molecules is spread over more modes of energy for a

calorically imperfect gas than for the perfect gas. This

difference influences the determination of flow properties

downstream of discontinuities. For perfect gas flow across

a shock wave, the kinetic energy of the flow in front of the

shock is converted to translational and rotational energy

downstream of the shock. For the calorically imperfect gas,

some of this kinetic energy conversion may be absorbed by

the vibrational mode of energy, thus decreasing the amount

of energy absorbed by the rotaional and translational modes.

Since temperature is a direct measurement of kinetic

(translational) energy, the increased energy absorbed in the

translational mode of the perfect gas, compared to the

calorically imperfect gas, causes the perfect gas model to

overpredict the temperature downstream of the shock (1:510).
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B.3 Complex Chemical Mixtures

The combustion products of a hydrogen-fueled air-

breathing SCRAMjet engine are a complex mixture of gaseous

species consisting largely of water and nitrogen. The

specific heat for a mixture of n gaseous species is given by

(1:387):

n
C; = ci C,(B.12)

where Ci is the mass fraction of the species. The specific

heat of the species, cpi, for a mixture of thermally perfect

gases is dependent upon the temperature of the mixture

(1:388). Using curve fitted JANAF thermochemical data, the

least squares coefficients of specific heats, enthalpy, and

entropy parameters may be obtained as functions of

temperature. In terms of the least squares coefficients, cp

is written as (13:56):

cp, = (a + bT + cT 2 + dT 3 + eT4)RgaC (B.13)

Enthalpy for a thermally perfect gas mixture is given

by (1:397):

T

h = + ho [cPdT (B.14)

Substituting Eq. (B.13) into Eq. (B.14) yields the least

squares coefficients form of enthalpy for species i (13:57):

h [(ho + aT + -bT2 + cT3 + J + eT5)Rg.. + hP.298] C (B. 15)

2 3a4 5  MW
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where hT=98 is the enthalpy of the species at the reference

temperature of 298 K.

Entropy for a thermally perfect gas is given by

(1:396):

s = dT - Rln -P
0PO (B.16)

= o - RlnPp0

Again, substituting Eq. (B.13) into the integral portion of

Eq. (B.16) yields the least squares coefficient form of the

species entropy parameter, 0j, for a species i (13:57):

40i = (0 + aT + br 2 + + -- )R9asC. (B.17)

2 3 4

The total specific heat, enthalpy, and entropy of the

thermally perfect mixture is then found from the summation

of the individual species value. As implemented in the

thermally perfect gas model (calorically imperfect), the

chemical composition of the mixture remains constant, or

frozen, throughout the nozzle.

B.4 Finite-Rate Chemically Reacting Flow

The finite-rate chemistry kinetics model accounts for a

reacting mixture of gaseous species and the dissociation of

gaseous molecules at high temperatures. Dissociation alters

the molecular composition and molecular weight of the

gaseous mixture and occurs around 2000 K for 02, and begins

B-6



at 4000 K for N2 (1:451). The change in molecular

composition and molecular weight alters the properties of

the flow and the determination of flowfield properties

downstream of discontinuities.

For a chemically reacting mixture of n different

gaseous species, Xi, the general chemical reaction equation

is:

n k,

Y, VAX h ~viXi (B. 18)
i-i ~kb =

where Pi' and Pi" are the stochiometric coefficients of the

reactants and products, respectively. The stochiometric

coefficients are positive for products and negative for

reactants. The constants kf and kb are the forward and

reverse reaction rate constants. The net rate of production

of a given species i is given by (1:493):

d[X1.] = Iv{v)kf7~i V/ kb[XJ] (B.19)

where [Xi] denotes the concentration of species i in moles

per unit volume. The rate constants, kf and kb, are related

by the equilbrium constant based on concentration, K,, such

that (1:493):

kf
kb Kc (B.20)

where the concentration based equilibrium constant, K,, can

be found from the equilibrium constant based on partial
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pressures, KP, using the equation:

Ri= (R )ViKP (B.21)

The equilibrium constant based on partial pressures, KP, for

a given chemical reaction is determined from the Gibbs free

energy and temperature (1:406):

KP (T) = e-AG"'1R 'r (B.22)

In Eq. (B.22) AGý'' is the Gibbs free energy of the products

minus the Gibbs free energy of the reactants for a given

chemical reaction with all species evaluated at a pressure

of one atmosphere and a specified reference temperature

(1:402-406). As implemented in the SCHNOZ computer program,

values of GP= are determined from a thermodynamic datafile

in the computer code.

The species concentration, [Xi], in Eq. (B.19) can also

be written as

[Xi] = pFi (B.23)

where p is the density of the mixture and Fj is the mass

fraction of species i divided by its molecular weight:

F1 = (B.24)
MW.

The net production rate equation, Eq. (B.19), can then be

written as
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_ d[Xj1] (RivT) Pll U (J )) (B.25)S-kf (Vj-• (pF.) -v(') S.S
= dt K~1 V 1  II(F'

The chemical reactions implemented in the finite-rate

chemistry model of the SCHNOZ code for this study are:

H + 0 vOH +0
H 2 +0 OH +H

OH + OH H 20 + 0
H2 + OH H20 + 0 (B.26)
0 +H +M- OH +M
H +H +Mw H2  +M
H + OH+Mv H0 + M
0 +O+M& 02  +M

For the reactions considered in Eq. (B.26) M is a third body

which can be a molecule of any species present in the

mixture. The finite-rate chemistry model in the SCHNOZ code

assumes that all third bodies have equal efficiencies in

contributing to the reactions (15:2-9). The rate of

production of a species i for the system is then the sum of

the rates of production of species i for the individual

reactions considered (1:496-497).
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Appendix C: Flux-Difference-Splitting

C.1 Introduction

The flux-difference-splitting (FDS) method is a

technique capable of capturing complicated flows with strong

property gradients. The FDS method requires the solution of

the Riemann problem at a given axial location to advance

downstream in a marching fashion. FDS takes advantage of

the wave-like nature of the Riemann problem to split the

flow vector fluxes along preffered paths of propagation

(6:153). Full details on the solution of the Riemann

problem for planar supersonic flow assuming a thermally and

calorically perfect gas are provided in reference (6). This

solution procedure was modified for a calorically imperfect

gas assumption in reference (13). The FDS method is

independent of the Riemann problem solution method.

C.2 The Riemann Problem

The Riemann problem is represented in Figure C.1.

Godunov proposed that the general flow property , *,

distribution can be modelled as a series of uniform flow

regions with a discontinuity occuring half-way between the

nodes of interest (6:11). In Figure C.1 the solid line -

represents the arbitrary * distribution and the dashed line

represents the Godunov regions of uniform flow.
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The collapse of the discontinuity to the midpoint,

j+1/2, results in waves that are propagated along

characteristics based on the wave angle (6:9) as depicted in

Figure C.2. Waves (1) and (3) can be any combination of

expansion or compression waves, and wave (2) is a contact

surface that seperates regions (2) and (4). Flow property

discontinuities are present across the waves, however the

contact surface, wave (2), cannot support a pressure nor

flow angle discontinuity (6:163). The values of flow

properties in regions (0) and (6) are known from the initial

values or the solution of the previous Riemann problem.

C.3 Solution of the Riemann Problem

The solution of the Riemann problem is the

determination of the primitive flow variables, p, p, u, and

v, in regions (2) and (4) as shown in Figure C.2. Doty (6)

details three different methods that may be used to solve

the Riemann problem. The first is an exact solution

procedure where iterations of non-linear, coupled equations

are required for a non-isentropic compression wave and

iterations of the non-linear Prandtl-Meyer relations are

necessary for simple expansions. Further iterations are

required to match the pressure in regions (2) and (4) to

satisfy the contact surface boundary. The second method is

an exact-approximate solution. This is similar to the exact

method but treats compression waves as isentropic. The
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isentropic Prandtl-Meyer relations may then be used to solve

for flow variables across any wave. The non-linear Prandtl-

Meyer relations still require iterative solution techniques

as well as further iterations of the entire solution to meet

the contact surface pressure requirements. The third method

is the linearized-approximate solution and is used

exclusively in this study.

The linearized-approximate solution treats all waves as

isentropic expansions and compressions which may be solved

by the Prandtl-Meyer relations. Furthermore, the Prandtl-

Meyer relations are linearized to allow for a closed form

algeabraic equation requiring no iterations. The

linearized-approximate solution to the Riemann problem is

dependent on the assumed thermodynamic model. The

determination of the primitive variables in region (2) and

(4) is more complicated for the calorically imperfect gas

and requires an iterative technique for the solution of

temperature

C.3.1 Linearized-Approximate Solution, Perfect Gas

For isentropic, planar, steady flow, the differential

form of the compatibilty relations, valid along Mach lines

is (6:165):

V R dp ± pV 2dO = 0 (C.1)

where the (+) sign refers to positive characteristics and

the (-) sign refers to negative characteristics. Using the
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definitions of velocity magnitude, V = u 2 + v2, and flow

angle, 0 = atan(v/u), and the following relationship, p -

yp/a 2 , Eq. (C.l) can be rearranged to yield:

dp ± (y•u2/a 2 ) d(v/u) = 0 (C.2)

Introducing the following definitions:

z =- (yU2/a2) (C.3)

Sa v/u (C.4)

d[ln(p)] dp (C.5)

p

a more efficient form of the compatibility equations may be

written as:

d[ln(p)] ± (z)do 0 (C.6)

Linearizing Eq. (C.6) yields:

A[ln(p)] ± (z) Ao 0 (C.7)

Referring to Figure C.2, a positive wave, wave (3), is

required to pass information from region (0) to region (2).

Using the (+) sign for the postive wave from Eq. (C.7) and

using the regions (0) and (2) in the difference operator

gives:

([ln(p)] 2 - (ln(p)] 0 ) + (z 0 ) (02-0o) = 0 (C.8)
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Rearranging Eq. (C.8) yields:

[ln(p)] 2 + (Zo)G 2 = [ln(p)] 0 +(z0 )a 0  (C.9)

Similarly, a negative wave is required to pass information

from region (6) to (4) and from Eq. (C.7) is expressed by:

[In(p)] 4 - (z 6 )0 4 = [ln(p)] 6 -(z 6 )a6  (C.10)

The pressure and flow angle (or slope, a) are required to

match across the contact surface. Thus:

04 02 (C.11)

p4  p 2  (C.12)

Equations (C.9), (C.10), (C.l1), and (C.12) now constitute a

set of four equations with four unknowns. After

substitution and rearranging the four equations, an

expression for the solution of the flow angle in region (4),

a4, is obtained in terms of known properties in regions (0)

and (6):

-4 [ln(p) ] 0- [ln(p) 6 + (z 6 ) 6 + (z0 ) 0  (C.3)
(z6+Zo)

Equation (C.10) is then solved for p4 :

p 4 = exp([ln(p)]6 + z6 (0 4 -0 6 )) (C.14)
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The density and speed of sound in regions (2) and (4) are

determined from isentropic ratios across waves (1) and (3):

P2 = [2 11/'Y (C. 15)

a 2 = [YP2/P211/ 2  (C. 16)

P4 - [p 4 1/y (C.17)

P6  [J

a 4 = [YP4/P4]1/2 (C.18)

Conservation of stagnation enthalpy across waves (1)

and (3) is used to obtain the velocity components in regions

(2) and (4). Recall from Appendix B that for a calorically

perfect gas h = CPT. Thus, across wave (3):

- - 21 1c.19)

Equation (C.19) can be solved explicitly for M4 ; and the

velocity components, in terms of the flow slope, a4, are

(13:62) :

U4 = M4a4 cos (tan-' (04)] (C.20)

v4 = M4a 4sin(tan- (0 4 )] (C.21)

A similar procedure is used to find the primitive flow

variables in region (2).
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C.3.2 Linearized-Approximate Solution, Imperfect Gas

The determination of the pressure in region (4), Eq.

(C.14) remains valid for a calorically imperfect gas. To

determine the remaining primitive flow variables a relation

is needed that does not rely on a calorically perfect form

of the conservation of stagnation enthalpy.

As outlined in reference (13), the determination of

temperature uses relations that take advantage of the

assumed isentropic nature of the flow. For a thermally

perfect gas, the differential quantity of entropy in a

system is (1:397):

ds =cAT- - RdLP (C.22)

Integration yields:

s = JcP-T R 1n P = -R ln-P. (C.23)
T. T PO p0

where the entropy parameter, 4, is defined as (13:63):

T d (C.24)
0T

Substituting Eq. (B.13) from Appendix B for the specific

heat, CP, for a mixture of gases, into Eq. (C.24) yields:

0= (410+ alnT +bT+2i+ dT3_ + _LýR (C.2S)

A change in entropy across wave (3) is found from Eq. (C.23)

and written in terms of the entropy parameters in regions
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(4) and (6) as:

S4 6 =44-6-R1A (C.26)

For isentropic flow, Eq. (C.26) reduces to

where 06 is found using Eq. (C.25) based on the known

parameters in region (6). Once Eq. (C.27) is solved for 04,

Eq. (C.25) may be iteratively solved for the temperature, t.

The thermal equation of state is then used to solve for the

density in region (4).

The conservation of stagnation enthalpy is used in a

different form than for the perfect gas to determine the

velocity components in region (4). Conservation of

stagnation enthalpy across wave (3) provides for the

determination of the stagnation enthalpy in region (4):

h=t + I (U2+V2)I (C.28)
2

The static enthalpy, N, is a function of T. and is found

using the methods described in Appendix B and the velocity

components, u. and v6, are known. Using the definition of

the slope, a = v/u, Eq. (C.28) can be rewritten as:
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t. = h4 + 2u, (1+a1) (c.29)

Solving for the axial velocity component in region (4), u 4

gives:

U4 2 (ht4-h4)'(.02 C= (C. 30)
+4u

The radial component of velocity, v4 , is then computed using

the slope in region (4):

V4 = u4a4  (C.31)

The Mach number is then computed :

M - Viag (C.32)
a 4

C.4 Riemann Fluxes

After solving the Riemann problem, the primitive

variables are combined to form the Riemann flux vectors in

regions (0),(2), (4), and (6) (6:171). The E and F flux

vectors are presented in section 3.1 and are repeated here

for convenience.

Pu FPv
= PUF = p Pv (C.33)

U (p e+p) v (pe+p)

The Riemann fluxes are calculated for each of the components

of the E and F vectors. For example, the first component of
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the E vector, El is pu and is computed in each of the

Riemann regions (0), (2), (4), and (6):

(E1)o pouo (C.34)

(El) 2  P2 U2  (C.35)

(El)4  P4 U4  (C.36)

(El) 6  P6 u6 (C.37)

The remaining Riemann flux vector components are found in a

similar manner.

C.5 Calculation of the Flux Differences

The Riemann flux differences are the differences in the

Riemann flux vector components taken across waves (1), (2)

and (3). For example, the difference of the Riemann fluxes

for the first component of the E vector, dEl, across waves

(1), (2) and (3) are:

(dEl)vave = (El) 2 - (El)0  (C.38)

(dEl) .av2 = (El) 4 - (El) 2  (C.39)

(dEl) ,av 3 = (E1) 6 - (El) 4  (C.40)

The sum of the total contributions across all three waves

gives the total contribution at the midpoint of the Riemann

region, node j+1/2 (6:182):

(dEl) J-1 / 2 = [(dEl) ,1,3 + (dEl) la2+ (dE) vavi]1J+1 /2 (C. 41)
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The remaining Riemann flux vector components are computed in

a similar manner.

C.6 Splitting the Flux Differences

Referring to Figure C.3 the information is known at

node j on axial plane i, and the solution is sought

downstream at node j on axial plane i+l. The solution of

the Riemann problem calculated the fluxes at the midpoints

j+1/2 and j-1/2. The Riemann flux differences were

calculated and are now split along their direction of

propagation to determine which information from Riemann

nodes j+1/2 and j-1/2 will reach node j at plane i+1.

Following the method detailed by Doty (3:183-186) the

flux differences are propagated in a direction determined by

streamlines and characteristics. At node j+1/2, if the

slope of waves (1), (2), or (3) is negative, the Riemann

flux differences across those waves contribute to the

solution at the downstream node (i+l,j) (6:185).

Conversely, at node j+1/2, if the slope of waves (1), (2),

or (3) is positive, the Riemann flux differences across

those waves do not contribute to the solution at (i+l,j)

but, would contribute to the solution at node (i+l,j+l).

Similarly, at Riemann node j-1/2, if the slope of waves (1),

(2), or (3) is positives, The Riemann flux differences

across those waves contribute to the solution at node

(i+l,j). The Riemann flux differences are essentially split
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into positive and negative contributions at each Riemann

node.

The contributions at the downstream node (i+l,j) are

found by summing the positive contributions of the Riemann

flux differences from node j-1/2 and the negative

contributions of the Riemann flux differences from node

j+l/2:
[=a" - [•Wa"eI [ wave'] (C.•42 )

dE÷+1/ 2 = [LJ÷7/21 + [dE!÷/2 + [ 1-.v+v/2j

d /= [d4r ve7 + + r •tvavel]+ (C.43)
d E; -1/ = .d j~al/•l + L[ d ,j~a/ 21 + L,. Ej -1/2 j

where the positive or negative signs denote positively or

negatively sloped flux differences. It is possible that

all, some, or none of the Riemann flux differences at a

Riemann midpoint node may contribute to the downstream

solution at a Riemann node, depending on their

characteristic slope. The same procedure is applied to the

F vector. Further details on the splitting of the flux

differences are presented in Appendix J of reference (6).
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General '(i-1) Riemann
Representation

Pt rop r
Arbitrary

'P distributicr,

i-1 i-1/2 x

Figure C.1. General property distribution and Riemann
description (6:135).

j+1l j+1

j+1/2 j -1 /2 22

0 0

'V x

Figure C.2. Riemann problem for planar supersonic flow

and resulting wave pattern (6:174).
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Figure C.3. Flux differences and splitting (6:187).
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Appendix D: FDS Decode Procedures

D.1 Introduction

The upwind FDS algorithm solves the downstream E and F

flux vectors based on the solution of the Riemann problem

generating Riemann fluxes that are then split along their

physically correct path of propagation as discussed in

Appendix C. To continually march the solution from plane i

to i+l the values of the primitive variables are required at

each plane to solve the Riemann problem. A decode procedure

is required at each axial plane to extract the primitive

variables from the calculated flux vectors. This decode

procedure is dependent upon the thermodynamic model utilized

in the flowfield solution.

D.2 Perfect Gas Decoding

The perfect gas decode procedure is detailed in

reference (6) and summarized herein. The four components

of the E vector, El, E2, E3, and E4, are known from the

spatial marching of the FDS algorithm. The decoding of the

B vector, see Eq. (3.2), requires the simultaneous solution

of five equations for the five unknowns p, u, v, p, and e

contained in the E flux vector.

The pe term contained in the E4 component can be

written in terms of the internal energy and flow energy:

D-1



pe = pC + P(u 2 +v 2) (D.1)

For a perfect gas the specific internal energy, 0, is

written as (1:388):

0 = cVT (D.2)

where c, for a perfect gas can be written in terms of the

gas constant, R, and the ratio of specifc heats, 7, as:

cv = -R (D.3)y-1

Using the thermal equation of state and the relations for 0

in Eq. (D.2) and c, in Eq. (D.3),the expression for the term

pe in Eq. (D.1) can be rewritten as:

pe =P + _Ip(u2+v2) (D.4)

Using Eq. (D.4) for the pe term, the E4 component is

given by:

E4 = U[(_P + 1p(u2+v2)) +p] (D.5)
Y-i 2

Expanding Eq. (D.5) and rearranging yields:

E4 = u+ pu(u2+v2) (D.6)

The E2, E3, and E4 components can be written in terms of the

El component, pu, to give:

E2 = (El)u + p (D.7)
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E3 = (El) v (D.8)

E4 = + 1 (El) (u 2 ) + _ (El) (v 2 ) (D.9)

Solving Eq. (D.8) for the radial velocity, v, gives:

V = E3 (D. 10)
E1

Similarly, Eq. (D.8) can be solved for the pressure, p:

p = E2 - (El) 1 (D.11)

Eqs. (D.10) and (D.11) can now be substituted into the E4

component equation, Eq. (D.9) to yield an expression that is

solely a function of the known E vector components and one

unknown, u:

E4 = [(E2) -(El) u + _I (El) (U 2) + 1(E1)r[ 3 (D.12)
[Y-l 2 2 El]

Casting this expession as a quadratic equation yields:

2(-) I Y12(IYj(El) 1 2 - [~ Y E2 + [(EYA) 1_ (E3) 2 1 0 (D.13)I2(y-1) j [y. 'J 2(lJ

This quadratic equation is then used to find the value of

the axial velocity, u:

-b + /b 2 - 4ac (D.14)2a

where:

a = + (El) (D.15)
2(y-1)
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b = y--(E2) (D.16)

c = (E4)- 1 (E3) 2  (D.17)
2 (El)

The remaining primitive flow variables are then found from:

V E3 (D.18)
El

p = E2-(EI) u (D.19)

P El (D.20)
U

Pe P .+_p(U2+V2) (D.21)
y-1 2

The perfect gas decode procedure is then complete.

D.3 Imperfect Gas Decoding

The imperfect gas decode procedure development follows

the procedure presented in refernece (13). The difference

in the decoding of the E vector for the calorically

imperfect gas is that the internal energy term, pe, in the

E4 component must be consistent with the imperfect gas

assumption (13:75). Specific internal energy, 0, for the

calorically imperfect gas is given by (1:395):

Q=h - RT (D.22)
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The total internal energy for the imperfect gas is then

found by substituting Eq. (D.22) into the pe expression, Eq.

(D.1) to yield:

pe = ph - p + ph (U2 +V 2 ) (D.23)

Substituting Eq. (D.23) into the E4 component gives:

E4 = puh + _Ipu(u2+v2) (D.24)

Substituting the El component, pu, and the E3 component,

puv, into Eq. (D.24) gives the following form of the E4

component:

1 u __1 (E3)
E4 = h(EI) + -(El)U 2 + 1 (E3) 2  (D.25)

2 2 El

Eq. (D.25) is now a function of the axial velocity, u, and

the enthalpy, h. The enthalpy is a function of temperature

which is determined from the least squares coefficient as

discussed in Appendix B. The thermal equation of state,

"which is still valid for the calorically perfect gas, and

the El component are combined to yield an expression for u:

U= (EI) RT (D.26)

P

Solving the E2 component for p and substituting the result

into Eq. (D.26) yields:

U= (EI)RT (D.27)
E2-(El)u
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Rearranging Eq. (D.27) a quadratic for u is developed:

(E1) U2 + (E2) u + (El)RT = 0 (D.28)

which when solved for u yields:

u = E2 + V(E2)-4(El) ((E1)RT) (D.29)

2(El)

The E4 component is now a function only of temperature with

both h and u dependent on the temperature value. The

temperature, T, is found iteratively using the secant method

and Eqs. (D.28) and (D.29) (13:77).

Once the temperature is determined, u is determined

from the quadratic relation. The remaining primitive

variables are found using the perfect gas decode procedure

of Eqs. (D.18) - (D.21).
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